function annotation
Recently Published Documents


TOTAL DOCUMENTS

140
(FIVE YEARS 47)

H-INDEX

26
(FIVE YEARS 5)

Diversity ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 636
Author(s):  
Yifeng Liu ◽  
Songle Fan ◽  
Hui Yu

Endosymbionts living in plants and insects are pervasive. Ficus (Moraceae) has very special inflorescences (which we also call figs) enclosed like an urn, and such inflorescence is usually parasitized by fig wasps. Ficus breeds fig wasp larvae in its figs and adult fig wasps pollinate for Ficus, Ficus and its obligated pollinator formed fig-fig wasp mutualism. Previous studies have found that this confined environment in figs may have provided protection for fig wasps and that this has left some imprints on the genome of fig wasps during the coevolution history of figs and fig wasps. Research on the diversity of both bacteria and fungi in figs are fewer. Our study explored the diversity of endosymbionts in Ficus hirta figs. We utilized high-throughput sequencing and biological database to identify the specific microorganism in figs, then conducted microorganism communities’ diversity analysis and function annotation analysis. As a result, we identified the dominant endosymbionts in figs, mainly some insect internal parasitic bacteria and fungi, plant pathogen, endophytes, and saprotroph. Then we also found bacteria in Ficus hirta figs were more diversified than fungi, and bacteria communities in female figs and functional male figs were different. These findings may give us more insight into the coevolution and interaction among endosymbiont, fig, and fig wasp.


2021 ◽  
pp. 107863
Author(s):  
Marcelo B.A. Veras ◽  
Bishnu Sarker ◽  
Sabeur Aridhi ◽  
João P.P. Gomes ◽  
José A.F. Macêdo ◽  
...  

2021 ◽  
Author(s):  
Yi-Heng Zhu ◽  
Chengxin Zhang ◽  
Yan Liu ◽  
Gilbert S Omenn ◽  
Peter L Freddolino ◽  
...  

Gene Ontology (GO) has been widely used to annotate functions of genes and gene products. We proposed a new method (TripletGO) to deduce GO terms of protein-coding and non-coding genes, through the integration of four complementary pipelines built on transcript expression profiling, genetic sequence alignment, protein sequence alignment and naive probability, respectively. TripletGO was tested on a large set of 5,754 genes from 8 species (human, mouse, arabidopsis, rat, fly, budding yeast, fission yeast, and nematoda) and 2,433 proteins with available expression data from the CAFA3 experiment and achieved function annotation accuracy significantly beyond the current state-of-the-art approaches. Detailed analyses show that the major advantage of TripletGO lies in the coupling of a new triplet-network based profiling method with the feature space mapping technique which can accurately recognize function patterns from transcript expressions. Meanwhile, the combination of multiple complementary models, especially those from transcript expression and protein-level alignments, improves the coverage and accuracy of the final GO annotation results. The standalone package and an online server of TripletGO are freely available at https://zhanglab.ccmb.med.umich.edu/TripletGO/.


2021 ◽  
Author(s):  
Qilin Li ◽  
Xinyao Meng ◽  
Weimin Chen ◽  
Xin Chen ◽  
Jing Mao

Abstract Background: Immunotherapy is one of the most promising treatment strategies in cancer, including oral squamous cell carcinoma (OSCC). This study aims to identify an immune-related signature to predict clinical outcomes of OSCC patients. Methods: Gene transcriptome data of OSCC tumour and normal tissues and corresponding clinical information were downloaded from The Cancer Genome Atlas (TCGA). Tumor Immune Estimation Resource algorithm (ESTIMATE) was used to calculate the immune/stromal-related scores. The immune/stromal scores and associated clinical characteristics of OSCC patients were evaluated. Univariate Cox proportional hazards regression analyses, least absolute shrinkage, and selection operator (LASSO) and receiver operating characteristic (ROC) curve analyses were performed to assess the prognostic prediction capacity. Gene Set Enrichment Analysis (GSEA) and Gene Ontology (GO) function annotation were used to analysis the functions of TME related genes.Results: 11 predictor genes were identified in the immune-related signature and overall survival (OS) in the high-risk group significantly shorter than the low-risk group. ROC analysis showed the TME related signature has well ability of predicting the total OS of OSCC patients. What’s more, GSEA and GO function annotation proved that immunity and immune-related pathways are mainly enriched in the high-risk group.Conclusions: We identified an immune-related signature that was closely correlated with the prognosis and immune response to OSCC patients. This signature may have important implications for improving the clinical survival rate of OSCC patients and provide a potential strategy for cancer immunotherapy.


2021 ◽  
Author(s):  
Luojing Zhou ◽  
Sha Zhong ◽  
Yuxin Fan ◽  
Yanpeng Yin ◽  
Jihai Gao ◽  
...  

Abstract Background: Fuzi is a processed product of the lateral root of Aconitum carmichaelii Debx, a plant of the Ranunculaceae, and has been used to treat various diseases. This study used Illumina Hiseq High-throughput platform to sequence, assemble and annotate, screen development related genes, transcription pathways and functional enrichment in true root, lateral roots and “bridge”, and analyzed their correlations with the formation and development of lateral roots of A.carmichaelii, which can reveal the process and regulation mechanism of lateral roots growth and maturation of A. carmichaelii. Results: By sequencing, a total of 66.13Gb clean data and 28,982 unigenes with function annotation were finally obtained, with N50 of 1,627 bp, and 12,833 genes were assigned to 130 specific metabolic pathways by Kyoto Encyclopedia of Genes and Genomes (KEGG), then 2,599 were significantly differentially expressed. The KEGG analysis of the DEGs revealed that it was mainly enriched in starch and sucrose metabolism, ribosome, carbon metabolism, plant hormone signal transduction which play an important role in the expansion of lateral roots. The DEGs and pathways indicated that there was little differences between true root and “bridge”, while a big difference between them and lateral roots. The DEGs of auxin, cytokinin and other pathways may be conducive to the formation of lateral roots, which explained the development mechanism of lateral roots from a molecular point of view. Conclusions: This study provides a reference for the study of cultivation and management of lateral roots of A. carmichaelii.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Jorge Oliveira ◽  
Miguel Antunes ◽  
Claudia P. Godinho ◽  
Miguel C. Teixeira ◽  
Isabel Sá-Correia ◽  
...  

AbstractNumerous genomes are sequenced and made available to the community through the NCBI portal. However, and, unlike what happens for gene function annotation, annotation of promoter sequences and the underlying prediction of regulatory associations is mostly unavailable, severely limiting the ability to interpret genome sequences in a functional genomics perspective. Here we present an approach where one can download a genome of interest from NCBI in the GenBank Flat File (.gbff) format and, with a minimum set of commands, have all the information parsed, organized and made available through the platform web interface. Also, the new genomes are compared with a given genome of reference in search of homologous genes, shared regulatory elements and predicted transcription associations. We present this approach within the context of Community YEASTRACT of the YEASTRACT + portal, thus benefiting from immediate access to all the comparative genomics queries offered in the YEASTRACT + portal. Besides the yeast community, other communities can install the platform independently, without any constraints. In this work, we exemplify the usefulness of the presented tool, within Community YEASTRACT, in constructing a dedicated database and analysing the genome of the highly promising oleaginous red yeast species Rhodotorula toruloides currently poorly studied at the genome and transcriptome levels and with limited genome editing tools. Regulatory prediction is based on the conservation of promoter sequences and available regulatory networks. The case-study examined is focused on the Haa1 transcription factor—a key regulator of yeast resistance to acetic acid, an important inhibitor of industrial bioconversion of lignocellulosic hydrolysates. The new tool described here led to the prediction of a RtHaa1 regulon with expected impact in the optimization of R. toruloides robustness for lignocellulosic and pectin-rich residue biorefinery processes.


2021 ◽  
Author(s):  
Tao Song ◽  
Congchong Wei ◽  
Dezhi Yuan ◽  
Shengwei Xiang ◽  
Lin Liu ◽  
...  

Background Polysaccharide utilization loci (PULs) were bacterial gene clusters encoding genes responsible for polysaccharide utilization process. PUL studies are blooming in recent years but the biochemical characterization speed is relative slow. There is a growing demand for PUL database with function annotations. Results Using signature genes corresponding for specific polysaccharide, 10422 PULs specific for 6 polysaccharides (agar, alginate, pectin, carrageenan, chitin and β-manan) from various bacterial phyla were predicted. Then online website of specific functional polysaccharide utilization loci (Sift-PULs) was constructed. Sift-PULs provides a repository where users could browse, search and download interested PULs without registration. Conclusions The key advantage of Sift-PULs is to assign a function annotation of each PUL, which is not available in existing PUL databases. PUL's functional annotation lays a foundation for studying novel enzymes, new pathways, PUL evolution or bioengineering. The website is available on http://sift-puls.org


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Yuntian Ye ◽  
Yongqiang Liu ◽  
Xiaolong Li ◽  
Qing Chen ◽  
Yong Zhang ◽  
...  

Blue light is an important signal that regulates the flowering of strawberry plants. To reveal the mechanism of early flowering under blue light treatment at the transcriptional regulation level, seedlings of cultivated strawberry (Fragaria × ananassa Duch.) “Benihoppe” were subjected to a white light treatment (WL) and blue light treatment (BL) until their flowering. To detect the expression patterns of genes in response to BL, a transcriptome analysis was performed based on RNA-Seq. The results identified a total of 6875 differentially expressed genes (DEGs) that responded to BL, consisting of 3138 (45.64%) downregulated ones and 3737 (54.36%) upregulated ones. These DEGs were significantly enriched into 98 GO terms and 71 KEGG pathways based on gene function annotation. Among the DEGs, the expression levels of genes that might participate in light signaling (PhyB, PIFs, and HY5) and circadian rhythm (FKF1, CCA1, LHY, and CO) in plants were altered under BL. The BBX transcription factors which responded to BL were also identified. The result showed that the FaBBX29, one of strawberry’s BBX family genes, may play an important role in flowering regulation. Our results provide a timely, comprehensive view and a reliable reference data resource for further study of flowering regulation under different light qualities.


2021 ◽  
Vol 12 ◽  
Author(s):  
Deng-Feng Xie ◽  
Rui-Yu Cheng ◽  
Xiao Fu ◽  
Xiang-Yi Zhang ◽  
Megan Price ◽  
...  

The karst environment is characterized by low soil water content, periodic water deficiency, and poor nutrient availability, which provides an ideal natural laboratory for studying the adaptive evolution of its inhabitants. However, how species adapt to such a special karst environment remains poorly understood. Here, transcriptome sequences of two Urophysa species (Urophysa rockii and Urophysa henryi), which are Chinese endemics with karst-specific distribution, and allied species in Semiaquilegia and Aquilegia (living in non-karst habitat) were collected. Single-copy genes (SCGs) were extracted to perform the phylogenetic analysis using concatenation and coalescent methods. Positively selected genes (PSGs) and clusters of paralogous genes (Mul_genes) were detected and subsequently used to conduct gene function annotation. We filtered 2,271 SCGs and the coalescent analysis revealed that 1,930 SCGs shared the same tree topology, which was consistent with the topology detected from the concatenated tree. Total of 335 PSGs and 243 Mul_genes were detected, and many were enriched in stress and stimulus resistance, transmembrane transport, cellular ion homeostasis, calcium ion transport, calcium signaling regulation, and water retention. Both molecular and morphological evidences indicated that Urophysa species evolved complex strategies for adapting to hostile karst environments. Our findings will contribute to a new understanding of genetic and phenotypic adaptive mechanisms of karst adaptation in plants.


Sign in / Sign up

Export Citation Format

Share Document