scholarly journals Transcriptional signature of accessory cells in the lateral line, using the Tnk1bp1:EGFP transgenic zebrafish line

2012 ◽  
Vol 12 (1) ◽  
pp. 6 ◽  
Author(s):  
Martine Behra ◽  
Viviana E Gallardo ◽  
John Bradsher ◽  
Aranza Torrado ◽  
Abdel Elkahloun ◽  
...  

The small pit-organs of Amiurus have been included in the group of ampullary lateral-line organs. On morphological and physiological grounds these ampullary organs are thought to be electric receptors and not mechano-receptors; thus they can be distinguished from all other types of acoustico-lateralis organs of vertebrates. Each small pit-organ consists of a duct leading from the surface of the skin to an ampulla, beneath which there is a group of cells lying at the base of the epidermis. There are two main types of cells in this group: the receptor and the accessory cells. The apical surfaces of the receptor cells bear microvillae but no cilia: these microvillae project into the lumen of the ampulla. Myelinated nerves supply the organs at the base ; they lose their myelin sheaths before entering the cell group where they branch and innervate the receptor cells. Small nerve terminals are closely applied to the surface of the receptor cells and in some places are thought to be in synaptic contact. Near these regions characteristic dense bodies are found in the base of the receptor cells. The bodies are surrounded by an accumulation of small vesicles of about 300 to 500 Å in diameter; they resemble structures found in corresponding situations in other types of sensory cells. Dense inclusions are found in some receptor cells: these inclusions have a highly ordered fine structure which in some sections appears as a square array of dense dots having a centre-to-centre spacing of about 75 Å. These observations are discussed in relation to the supposed activity of small pit-organs as electric receptors and to their position in the group of ampullary lateral-line organs.


Author(s):  
K. Hama

The lateral line organs of the sea eel consist of canal and pit organs which are different in function. The former is a low frequency vibration detector whereas the latter functions as an ion receptor as well as a mechano receptor.The fine structure of the sensory epithelia of both organs were studied by means of ordinary transmission electron microscope, high voltage electron microscope and of surface scanning electron microscope.The sensory cells of the canal organ are polarized in front-caudal direction and those of the pit organ are polarized in dorso-ventral direction. The sensory epithelia of both organs have thinner surface coats compared to the surrounding ordinary epithelial cells, which have very thick fuzzy coatings on the apical surface.


Author(s):  
Edward D. DeLamater ◽  
Walter R. Courtenay ◽  
Cecil Whitaker

Comparative scanning electron microscopy studies of fish scales of different orders, families, genera and species within genera have demonstrated differences which warrant elaboration. These differences in detail appear to be sufficient to act as “fingerprints”, at least, for family differences. To date, the lateral line scales have been primarily studied. These demonstrate differences in the lateral line canals; the pattern of ridging with or without secondary protuberances along the edges; the pattern of spines or their absence on the anterior border of the scales; the presence or absence of single or multiple holes on the ventral and dorsal sides of the lateral line canal covers. The distances between the ridges in the pattern appear likewise to be important.A statement of fish scale structure and a comparison of family and species differences will be presented.The authors wish to thank Dr. Donald Marzalek and Mr. Wallace Charm of the Marine and Atmospheric Laboratory of the University of Miami and Dr. Sheldon Moll and Dr. Richard Turnage of AMR for their exhaustive help in these preliminary studies.


2013 ◽  
pp. 1-1
Author(s):  
Benjamin D Weger ◽  
Meltem Weger ◽  
Nicolas Diotel ◽  
Michael Nusser ◽  
Sepand Rastegar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document