scholarly journals In vivo and in silico determination of essential genes of Campylobacter jejuni

BMC Genomics ◽  
2011 ◽  
Vol 12 (1) ◽  
Author(s):  
Aline Metris ◽  
Mark Reuter ◽  
Duncan JH Gaskin ◽  
Jozsef Baranyi ◽  
Arnoud HM van Vliet
Author(s):  
Serena Mestria ◽  
Sara Odoardi ◽  
Sofia Federici ◽  
Sabrine Bilel ◽  
Micaela Tirri ◽  
...  

Abstract Since the widespread diffusion of new psychoactive substances, forensic laboratories are often required to identify new drugs and their metabolites for which information or reference standards are lacking. We performed a study on N-methyl-2-aminoindane (NM2AI) metabolism in silico and in vivo, in order to identify the main metabolites to be screened in the different biological samples. We performed the in silico metabolism prediction of NM2AI using MetaSiteTM software and subsequently verified the presence of metabolites in the blood, urine and hair of mice after NM2AI administration. The samples were analyzed by liquid chromatography–high-resolution mass spectrometry (LC–HRMS) with a benchtop Orbitrap Exactive mass detector. This allowed the evaluation of the agreement between software prediction and experimental results in biological samples. LC–HRMS analysis identified seven main metabolites in the urine. They were identified, by their accurate masses and fragmentation patterns, as 2-aminoindane (2AI), two hydroxy-2AI and four hydroxy-NM2AI; one of the hydroxy-NM2AI and one of the hydroxy-2AI underwent also to conjugation. NM2AI and 2AI were also detected by LC–HRMS in the hair and blood. Based on these findings, we developed an LC–HRMS method for the screening of NM2AI and metabolites in urine, blood and hair samples. This can be of primary effectiveness to uncover the abuse of NM2AI and related possible intoxications.


2021 ◽  
Vol 22 (6) ◽  
pp. 2949
Author(s):  
Anna Iwaniak ◽  
Damir Mogut ◽  
Piotr Minkiewicz ◽  
Justyna Żulewska ◽  
Małgorzata Darewicz

In silico and in vitro methods were used to analyze ACE- and DPP-IV-inhibiting potential of Gouda cheese with a modified content of β-casein. Firstly, the BIOPEP-UWM database was used to predict the presence of ACE and DPP-IV inhibitors in casein sequences. Then, the following Gouda cheeses were produced: with decreased, increased, and normative content of β-casein after 1 and 60 days of ripening each (six variants in total). Finally, determination of the ACE/DPP-IV-inhibitory activity and the identification of peptides in respective Gouda-derived water-soluble extracts were carried out. The identification analyses were supported with in silico calculations, i.e., heatmaps and quantitative parameters. All Gouda variants exhibited comparable ACE inhibition, whereas DPP-IV inhibition was more diversified among the samples. The samples derived from Gouda with the increased content of β-casein (both stages of ripening) had the highest DPP-IV-inhibiting potency compared to the same samples measured for ACE inhibition. Regardless of the results concerning ACE and DPP-IV inhibition among the cheese samples, the heatmap showed that the latter bioactivity was predominant in all Gouda variants, presumably because it was based on the qualitative approach (i.e., peptide presence in the sample). Our heatmap did not include the bioactivity of a single peptide as well as its quantity in the sample. In turn, the quantitative parameters showed that the best sources of ACE/DPP-IV inhibitors were all Gouda-derived extracts obtained after 60 days of the ripening. Although our protocol was efficient in showing some regularities among Gouda cheese variants, in vivo studies are recommended for more extensive investigations of this subject.


Author(s):  
Joshua Rees-Garbutt ◽  
Jake Rightmyer ◽  
Oliver Chalkley ◽  
Lucia Marucci ◽  
Claire Grierson

AbstractThe minimal gene set for life has often been theorised, with at least ten produced for Mycoplasma genitalium (M. genitalium). Due to the difficulty of using M. genitalium in the lab, combined with its long replication time of 12 - 15 hours, none of these theoretical minimal genomes have been tested, even with modern techniques. The publication of the M. genitalium whole-cell model provided the first opportunity to test them, simulating the genome edits in-silico. We simulated eight minimal gene sets from the literature, finding that they produced in-silico cells that did not divide. Using knowledge from previous research, we reintroduced specific essential and low essential genes in-silico; enabling cellular division. This reinforces the need to identify species-specific low essential genes and their interactions. Any genome designs created using the currently incomplete and fragmented gene essentiality information, will very likely require in-vivo reintroductions to correct issues and produce dividing cells.


Molecules ◽  
2020 ◽  
Vol 25 (5) ◽  
pp. 1106 ◽  
Author(s):  
Jin-Ju Byeon ◽  
Min-Ho Park ◽  
Seok-Ho Shin ◽  
Yuri Park ◽  
Byeong ill Lee ◽  
...  

Parkinson’s disease is one of the most common neurodegenerative diseases. Adenosine regulates the response to other neurotransmitters in the brain regions related to motor function. In the several subtypes of adenosine receptors, especially, adenosine 2A receptors (A2ARs) are involved in neurodegenerative conditions. ZM241385 is one of the selective non-xanthine A2AR antagonists with high affinity in the nanomolar range. This study describes the in vitro and in vivo pharmacokinetic properties of ZM241385 in rats. A liquid chromatography-quadrupole time-of-flight mass spectrometric (LC-qToF MS) method was developed for the determination of ZM241385 in rat plasma. In vivo IV administration studies showed that ZM241385 was rapidly eliminated in rats. However, the result of in vitro metabolic stability studies showed that ZM241385 had moderate clearance, suggesting that there is an extra clearance pathway in addition to hepatic clearance. In addition, in vivo PO administration studies demonstrated that ZM241385 had low exposure in rats. The results of semi-mass balance studies and the in silico PBPK modeling studies suggested that the low bioavailability of ZM241385 after oral administration in rats was due to the metabolism and by liver, kidney, and gut.


2017 ◽  
Vol 5 (2) ◽  
pp. 176-183
Author(s):  
Sahar A. majeed ◽  
Heider S Qassam

Diabetes mellitus has repeatedly attracted attention of researchers to design different therapeutic approaches to achieve an optimal treatment for this serious health challenge. The purpose of the study is to evaluate treatment option for controlling hyperglycemia at site of glucose absorption through designing computerized and in vivo models to test a sodium-glucose symporter based drug design. In silico protein data bank (pdb) model of SGLUT was processed and analyzed for docking with edited test glycoside. Another model included determination of the dose-response relationship in rat intestinal glucose/saline perfusion with test glycoside. Our result showed that Ginsenoside revealed a dose dependent SGLUT blocking activity in a saturation kinetics curve, which was agreed with in silico model results.


Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381 ◽  
Author(s):  
B Ovalle-Magallanes ◽  
A Madariaga-Mazón ◽  
A Navarrete ◽  
R Mata

1987 ◽  
Vol 26 (01) ◽  
pp. 1-6 ◽  
Author(s):  
S. Selvaraj ◽  
M. R. Suresh ◽  
G. McLean ◽  
D. Willans ◽  
C. Turner ◽  
...  

The role of glycoconjugates in tumor cell differentiation has been well documented. We have examined the expression of the two anomers of the Thomsen-Friedenreich antigen on the surface of human, canine and murine tumor cell membranes both in vitro and in vivo. This has been accomplished through the synthesis of the disaccharide terminal residues in both a and ß configuration. Both entities were used to generate murine monoclonal antibodies which recognized the carbohydrate determinants. The determination of fine specificities of these antibodies was effected by means of cellular uptake, immunohistopathology and immunoscintigraphy. Examination of pathological specimens of human and canine tumor tissue indicated that the expressed antigen was in the β configuration. More than 89% of all human carcinomas tested expressed the antigen in the above anomeric form. The combination of synthetic antigens and monoclonal antibodies raised specifically against them provide us with invaluable tools for the study of tumor marker expression in humans and their respective animal tumor models.


1974 ◽  
Vol 32 (02/03) ◽  
pp. 405-416 ◽  
Author(s):  
M. R Hardeman ◽  
Carina J L. Heynens

SummaryStorage experiments were performed at 4°, 25° and 37° C with platelet-rich plasma under sterile conditions. In some experiments also the effect of storing platelets at 4° C in whole blood was investigated.Before, during and after three days of storage, the platelets were tested at 37° C for their serotonin uptake and response to hypotonic shock. In addition some glycolytic intermediates were determined.A fair correlation was noticed between the serotonin uptake and hypotonic shock experiments. Both parameters were best maintained at 25° C. Also platelet counting, performed after the storage period, indicated 25° C as the best storage temperature. Determination of glycolytic intermediates did not justify any conclusion regarding the optimal storage temperature. Of the various anticoagulants studied, ACD and heparin gave the best results as to the serotonin uptake and hypotonic shock response, either with fresh or stored platelets. The use of EDTA resulted in the lowest activity, especially after storage.The results of these storage experiments in vitro, correspond well with those in vivo reported in the literature.


Sign in / Sign up

Export Citation Format

Share Document