scholarly journals A pilot study for channel catfish whole genome sequencing and de novo assembly

BMC Genomics ◽  
2011 ◽  
Vol 12 (1) ◽  
Author(s):  
Yanliang Jiang ◽  
Jianguo Lu ◽  
Eric Peatman ◽  
Huseyin Kucuktas ◽  
Shikai Liu ◽  
...  
2021 ◽  
Vol 32 (6) ◽  
pp. 654-663
Author(s):  
Lluís Ferrer ◽  
Rocío García‐Fonticoba ◽  
Daniel Pérez ◽  
Joaquim Viñes ◽  
Norma Fàbregas ◽  
...  

2013 ◽  
Vol 10 (1) ◽  
pp. 335 ◽  
Author(s):  
T H Wong ◽  
Bethany L Dearlove ◽  
Jessica Hedge ◽  
Adam P Giess ◽  
Paolo Piazza ◽  
...  

2020 ◽  
Vol 85 ◽  
pp. 104579
Author(s):  
Kumari Snehkant Lata ◽  
Vibhisha Vaghasia ◽  
Shivarudrappa B. Bhairappanavar ◽  
Swapnil Kumar ◽  
Garima Ayachit ◽  
...  

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Brent S. Pedersen ◽  
Joe M. Brown ◽  
Harriet Dashnow ◽  
Amelia D. Wallace ◽  
Matt Velinder ◽  
...  

AbstractIn studies of families with rare disease, it is common to screen for de novo mutations, as well as recessive or dominant variants that explain the phenotype. However, the filtering strategies and software used to prioritize high-confidence variants vary from study to study. In an effort to establish recommendations for rare disease research, we explore effective guidelines for variant (SNP and INDEL) filtering and report the expected number of candidates for de novo dominant, recessive, and autosomal dominant modes of inheritance. We derived these guidelines using two large family-based cohorts that underwent whole-genome sequencing, as well as two family cohorts with whole-exome sequencing. The filters are applied to common attributes, including genotype-quality, sequencing depth, allele balance, and population allele frequency. The resulting guidelines yield ~10 candidate SNP and INDEL variants per exome, and 18 per genome for recessive and de novo dominant modes of inheritance, with substantially more candidates for autosomal dominant inheritance. For family-based, whole-genome sequencing studies, this number includes an average of three de novo, ten compound heterozygous, one autosomal recessive, four X-linked variants, and roughly 100 candidate variants following autosomal dominant inheritance. The slivar software we developed to establish and rapidly apply these filters to VCF files is available at https://github.com/brentp/slivar under an MIT license, and includes documentation and recommendations for best practices for rare disease analysis.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0253440
Author(s):  
Samantha Gunasekera ◽  
Sam Abraham ◽  
Marc Stegger ◽  
Stanley Pang ◽  
Penghao Wang ◽  
...  

Whole-genome sequencing is essential to many facets of infectious disease research. However, technical limitations such as bias in coverage and tagmentation, and difficulties characterising genomic regions with extreme GC content have created significant obstacles in its use. Illumina has claimed that the recently released DNA Prep library preparation kit, formerly known as Nextera Flex, overcomes some of these limitations. This study aimed to assess bias in coverage, tagmentation, GC content, average fragment size distribution, and de novo assembly quality using both the Nextera XT and DNA Prep kits from Illumina. When performing whole-genome sequencing on Escherichia coli and where coverage bias is the main concern, the DNA Prep kit may provide higher quality results; though de novo assembly quality, tagmentation bias and GC content related bias are unlikely to improve. Based on these results, laboratories with existing workflows based on Nextera XT would see minor benefits in transitioning to the DNA Prep kit if they were primarily studying organisms with neutral GC content.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi15-vi15
Author(s):  
Stephen J Bagley ◽  
Jacob Till ◽  
Aseel Abdalla ◽  
MacLean Nasrallah ◽  
Tomer Lauterman ◽  
...  

Abstract BACKGROUND Plasma circulating tumor DNA (ctDNA) is rarely detectable by traditional methods in patients with GBM. As a result, unlike in lung and other cancers, serial next generation sequencing of ctDNA for monitoring GBM tumor burden has been challenging. In light of the low tumor fraction (TF) of DNA fragments in GBM patient plasma and the urgent need to improve upon MRI for tracking GBM tumor burden, we conducted a pilot study in patients with newly diagnosed GBM using the C2 intelligence platform (C2i Genomics), which leverages genome-wide mutational integration for highly sensitive ctDNA detection. METHODS Plasma was collected pre- and post-operatively in patients with newly diagnosed GBM undergoing surgical resection/biopsy. cfDNA was extracted, quantified, and analyzed for fragment size. Genomic DNA (gDNA) was extracted from matched tumor tissue. Whole genome sequencing (WGS) was performed on both gDNA and cfDNA. A specific copy number alteration (CNA) compendium was created for each patient to generate a readout of TF (Zviran, Nat Medicine 2020). We assessed the association between TF at post-operative day 1 (a surrogate for residual disease) and OS, adjusting for other prognostic factors using Cox regression. RESULTS 37 patients were enrolled. For samples with high tumor fraction (n=5), a statistically significant (p< 1e-4) correlation between CNA profiles of tumor tissue and plasma samples was observed. Post-operative TF above the median value was associated with inferior OS (median 7.7 vs. 19.3 months, p=0.019). This association persisted after adjusting for age, O6-methylguanine-DNA methyltransferase methylation status, extent of resection, and performance status (adjusted HR 2.5, 95% CI 1.1-5.6, p=0.03). CONCLUSION Genome-wide mutational integration enables ultra-sensitive detection of ctDNA in GBM patient plasma. Post-operative TF measured by the C2i test is independently associated with OS in newly diagnosed GBM, providing the foundation to evaluate this technology for personalized prognostication and disease monitoring.


Sign in / Sign up

Export Citation Format

Share Document