scholarly journals Differences among brain tumor stem cell types and fetal neural stem cells in focal regions of histone modifications and DNA methylation, broad regions of modifications, and bivalent promoters

BMC Genomics ◽  
2014 ◽  
Vol 15 (1) ◽  
pp. 724 ◽  
Author(s):  
Sally Yoo ◽  
Mark C Bieda
2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Sanna-Maria Hede ◽  
Inga Nazarenko ◽  
Monica Nistér ◽  
Mikael S. Lindström

Malignant glioma is the most common brain tumor in adults and is associated with a very poor prognosis. Mutations in the p53 tumor suppressor gene are frequently detected in gliomas. p53 is well-known for its ability to induce cell cycle arrest, apoptosis, senescence, or differentiation following cellular stress. That the guardian of the genome also controls stem cell self-renewal and suppresses pluripotency adds a novel level of complexity to p53. Exactly how p53 works in order to prevent malignant transformation of cells in the central nervous system remains unclear, and despite being one of the most studied proteins, there is a need to acquire further knowledge about p53 in neural stem cells. Importantly, the characterization of glioma cells with stem-like properties, also known as brain tumor stem cells, has opened up for the development of novel targeted therapies. Here, we give an overview of what is currently known about p53 in brain tumors and neural stem cells. Specifically, we review the literature regarding transformation of adult neural stem cells and, we discuss how the loss of p53 and deregulation of growth factor signaling pathways, such as increased PDGF signaling, lead to brain tumor development. Reactivation of p53 in brain tumor stem cell populations in combination with current treatments for glioma should be further explored and may become a viable future therapeutic approach.


2019 ◽  
Author(s):  
Merve Deniz Abdusselamoglu ◽  
Lisa Landskron ◽  
Sarah K. Bowman ◽  
Elif Eroglu ◽  
Thomas Burkard ◽  
...  

AbstractDuring central nervous system (CNS) development, spatiotemporal gene expression programs mediate specific lineage decisions to generate neuronal and glial cell types from neural stem cells (NSCs). However, little is known about the epigenetic landscape underlying these highly complex developmental events. Here, we perform ChIP-seq on distinct subtypes of Drosophila FACS-purified neural stem cells (NSCs) and their differentiated progeny to dissect the epigenetic changes accompanying the major lineage decisions in vivo. By analyzing active and repressive histone modifications, we show that stem cell identity genes are silenced during differentiation by loss of their activating marks and not via repressive histone modifications. Our analysis also uncovers a new set of genes specifically required for altering lineage patterns in type II neuroblasts, one of the two main Drosophila NSC identities. Finally, we demonstrate that this subtype specification in NBs, unlike NSC differentiation, requires Polycomb-group (PcG)-mediated repression.Summary statementDynamic epigenetic landscape of Drosophila neural stem cell lineages.


BMC Cancer ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Dominique M. O. Higgins ◽  
Maisel Caliva ◽  
Mark Schroeder ◽  
Brett Carlson ◽  
Pavan S. Upadhyayula ◽  
...  

Abstract Background Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults, with a median survival of approximately 15 months. Semaphorin 3A (Sema3A), known for its axon guidance and antiangiogenic properties, has been implicated in GBM growth. We hypothesized that Sema3A directly inhibits brain tumor stem cell (BTSC) proliferation and drives invasion via Neuropilin 1 (Nrp1) and Plexin A1 (PlxnA1) receptors. Methods GBM BTSC cell lines were assayed by immunostaining and PCR for levels of Semaphorin 3A (Sema3A) and its receptors Nrp1 and PlxnA1. Quantitative BrdU, cell cycle and propidium iodide labeling assays were performed following exogenous Sema3A treatment. Quantitative functional 2-D and 3-D invasion assays along with shRNA lentiviral knockdown of Nrp1 and PlxnA1 are also shown. In vivo flank studies comparing tumor growth of knockdown versus control BTSCs were performed. Statistics were performed using GraphPad Prism v7. Results Immunostaining and PCR analysis revealed that BTSCs highly express Sema3A and its receptors Nrp1 and PlxnA1, with expression of Nrp1 in the CD133 positive BTSCs, and absence in differentiated tumor cells. Treatment with exogenous Sema3A in quantitative BrdU, cell cycle, and propidium iodide labeling assays demonstrated that Sema3A significantly inhibited BTSC proliferation without inducing cell death. Quantitative functional 2-D and 3-D invasion assays showed that treatment with Sema3A resulted in increased invasion. Using shRNA lentiviruses, knockdown of either NRP1 or PlxnA1 receptors abrogated Sema3A antiproliferative and pro-invasive effects. Interestingly, loss of the receptors mimicked Sema3A effects, inhibiting BTSC proliferation and driving invasion. Furthermore, in vivo studies comparing tumor growth of knockdown and control infected BTSCs implanted into the flanks of nude mice confirmed the decrease in proliferation with receptor KD. Conclusions These findings demonstrate the importance of Sema3A signaling in GBM BTSC proliferation and invasion, and its potential as a therapeutic target.


2010 ◽  
Author(s):  
Mayumi Jijiwa ◽  
Shibi Likhite ◽  
Chang-Hyuk Kwon ◽  
Mariano Viapiano ◽  
Peter Houghton ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document