scholarly journals Aspergillus flavus grown in peptone as the carbon source exhibits spore density- and peptone concentration-dependent aflatoxin biosynthesis

2012 ◽  
Vol 12 (1) ◽  
pp. 106 ◽  
Author(s):  
Shijuan Yan ◽  
Yating Liang ◽  
Jindan Zhang ◽  
Chun-Ming Liu
2018 ◽  
Vol 115 ◽  
pp. 41-51 ◽  
Author(s):  
Opemipo Esther Fasoyin ◽  
Bin Wang ◽  
Mengguang Qiu ◽  
Xiaoyun Han ◽  
Kuang-Ren Chung ◽  
...  

Author(s):  
Shyam L. Kandel ◽  
Rubaiya Jesmin ◽  
Brian M. Mack ◽  
Rajtilak Majumdar ◽  
Matthew K. Gilbert ◽  
...  

Aspergillus flavus is an opportunistic pathogen of oilseed crops such as maize, peanut, cottonseed, and tree nuts and produces carcinogenic secondary metabolites known as aflatoxins during seed colonization. Aflatoxin contamination not only reduces the value of the produce but also is a health hazard to humans and animals. Previously, we observed inhibition of A. flavus aflatoxin biosynthesis upon exposure to the marine bacterium, Vibrio gazogenes (Vg). In this study, we used RNA sequencing to examine the transcriptional profiles of A. flavus treated with both live and heat-inactivated dead Vg and control samples. Fungal biomass, total accumulated aflatoxins, and expression profiles of genes constituting secondary metabolite biosynthetic gene clusters were determined at 24, 30, and 40 h after treatment. Statistically significant reductions in total aflatoxins were detected in Vg-treated samples as compared to control samples at 40 h. But no statistical difference in fungal biomass was observed upon these treatments. The Vg treatments were most effective on aflatoxin biosynthesis as was reflected in significant downregulation of majority of the genes in the aflatoxin gene cluster including the aflatoxin pathway regulator gene, aflR. Along with aflatoxin genes, we also observed significant downregulation in some other secondary metabolite gene clusters including cyclopiazonic acid and aflavarin, suggesting that the treatment may inhibit other secondary metabolites as well. Finally, a weighted gene correlation network analysis identified an upregulation of ten genes that were most strongly associated with Vg-dependent aflatoxin inhibition and provide a novel start-point in understanding the mechanisms that result in this phenomenon.


Author(s):  
M O Oyewale

The mycelial dry weight and dinitrosalicylic acid (D.N.S.A.) method was used to determine growth and amylase production by Aspergillus flavus grown on different carbon sources. Growth of the fungus was determined at 24 h intervals over a period of six days by the dry mycelial weight methods, while the amylase activity in the culture filtrates of A. flavus was determined by the D.N.S.A method. A total of 45 samples were prepared to determine growth and amylase activity of Aspergillus flavus grown on different carbon sources. The concentration of the various carbon sources ranges between 0.4 to 2% W/V. Duncan’s multiple range test was used to determine the level of significance of the different carbon sources for effective growth and amylase production by Aspergillus flavus. Aspergillus flavus demonstrated the capability to produce significant growth and amylase activities in the medium containing soluble starch, sorghum and cassava peel as sole carbon source. The amount of mycelial dry weight produced from soluble starch, sorghum and cassava peel is significantly higher than those produced from other carbon sources. The data revealed that there is a correlation between growth and amylase production by Aspergillus flavus. The available data from this study showed that soluble starch is the best carbon source for optimum growth and amylase production by A flavus while sorghum and cassava peel are close substitute for optimum growth and amylase production by Aspergillus flavus. Keywords: Growth, amylase activity and Aspergillus flavus


1980 ◽  
Vol 43 (5) ◽  
pp. 381-384 ◽  
Author(s):  
M. F. DUTTON ◽  
M. S. ANDERSON

The effect of a range of organophosphorus and various other compounds on production of aflatoxin by Aspergillus flavus was investigated. Five organophosphorus compounds - Chlormephos, Ciodrin, Naled, Phosdrin and Trichlorphon- at concentrations of 20 and 100 μg/ml of culture fluid were found to have activity similar to Dichlorvos, in that they lowered the level of aflatoxin produced and caused formation of several anthraquinone pigments. Two of these pigments have not previously been described, one was named Versicol and a suggested structure is presented, whilst the other compound was shown to be its acetate derivative. A rationale is suggested for the required elements of structure, which are necessary for an organophosphorus compound to have Dichlorvos-type activity. Two unrelated compounds, ammonium nitrate and Tridecanone were also found to elicit Dichlorvos-type activity. It is likely that tridecanone or its breakdown products competitively inhibit enzymes involved in aflatoxin biosynthesis. It is possible that this inhibition effect explains the lowering of aflatoxin production in lipid-rich commodities infected by A. flavus.


2019 ◽  
Vol 21 (12) ◽  
pp. 4792-4807 ◽  
Author(s):  
Guang Yang ◽  
Yuewei Yue ◽  
Silin Ren ◽  
Mingkun Yang ◽  
Yi Zhang ◽  
...  

Author(s):  
Guang Yang ◽  
Yule Hu ◽  
Opemipo E. Fasoyin ◽  
Yuewei Yue ◽  
Lijie Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document