scholarly journals High throughput analysis reveals dissociable gene expression profiles in two independent neural systems involved in the regulation of social behavior

2012 ◽  
Vol 13 (1) ◽  
Author(s):  
Tyler J Stevenson ◽  
Kirstin Replogle ◽  
Jenny Drnevich ◽  
David F Clayton ◽  
Gregory F Ball
Science ◽  
2020 ◽  
Vol 371 (6531) ◽  
pp. eaba5257 ◽  
Author(s):  
Anna Kuchina ◽  
Leandra M. Brettner ◽  
Luana Paleologu ◽  
Charles M. Roco ◽  
Alexander B. Rosenberg ◽  
...  

Single-cell RNA sequencing (scRNA-seq) has become an essential tool for characterizing gene expression in eukaryotes, but current methods are incompatible with bacteria. Here, we introduce microSPLiT (microbial split-pool ligation transcriptomics), a high-throughput scRNA-seq method for Gram-negative and Gram-positive bacteria that can resolve heterogeneous transcriptional states. We applied microSPLiT to >25,000 Bacillus subtilis cells sampled at different growth stages, creating an atlas of changes in metabolism and lifestyle. We retrieved detailed gene expression profiles associated with known, but rare, states such as competence and prophage induction and also identified unexpected gene expression states, including the heterogeneous activation of a niche metabolic pathway in a subpopulation of cells. MicroSPLiT paves the way to high-throughput analysis of gene expression in bacterial communities that are otherwise not amenable to single-cell analysis, such as natural microbiota.


2019 ◽  
Author(s):  
Anna Kuchina ◽  
Leandra M. Brettner ◽  
Luana Paleologu ◽  
Charles M. Roco ◽  
Alexander B. Rosenberg ◽  
...  

AbstractSingle-cell RNA-sequencing (scRNA-seq) has become an essential tool for characterizing multi-celled eukaryotic systems but current methods are not compatible with bacteria. Here, we introduce microSPLiT, a low cost and high-throughput scRNA-seq method that works for gram-negative and gram-positive bacteria and can resolve transcriptional states that remain hidden at a population level. We applied microSPLiT to >25,000 Bacillus subtilis cells sampled from different growth stages, creating a detailed atlas of changes in metabolism and lifestyle. We not only retrieve detailed gene expression profiles associated with known but rare states such as competence and PBSX prophage induction, but also identify novel and unexpected gene expression states including heterogeneous activation of a niche metabolic pathway in a subpopulation of cells. microSPLiT empowers high-throughput analysis of gene expression in complex bacterial communities.


BMC Genetics ◽  
2010 ◽  
Vol 11 (1) ◽  
pp. 25 ◽  
Author(s):  
Caroline Daelemans ◽  
Matthew E Ritchie ◽  
Guillaume Smits ◽  
Sayeda Abu-Amero ◽  
Ian M Sudbery ◽  
...  

2021 ◽  
Vol 9 (Suppl 1) ◽  
pp. A12.1-A12
Author(s):  
Y Arjmand Abbassi ◽  
N Fang ◽  
W Zhu ◽  
Y Zhou ◽  
Y Chen ◽  
...  

Recent advances of high-throughput single cell sequencing technologies have greatly improved our understanding of the complex biological systems. Heterogeneous samples such as tumor tissues commonly harbor cancer cell-specific genetic variants and gene expression profiles, both of which have been shown to be related to the mechanisms of disease development, progression, and responses to treatment. Furthermore, stromal and immune cells within tumor microenvironment interact with cancer cells to play important roles in tumor responses to systematic therapy such as immunotherapy or cell therapy. However, most current high-throughput single cell sequencing methods detect only gene expression levels or epigenetics events such as chromatin conformation. The information on important genetic variants including mutation or fusion is not captured. To better understand the mechanisms of tumor responses to systematic therapy, it is essential to decipher the connection between genotype and gene expression patterns of both tumor cells and cells in the tumor microenvironment. We developed FocuSCOPE, a high-throughput multi-omics sequencing solution that can detect both genetic variants and transcriptome from same single cells. FocuSCOPE has been used to successfully perform single cell analysis of both gene expression profiles and point mutations, fusion genes, or intracellular viral sequences from thousands of cells simultaneously, delivering comprehensive insights of tumor and immune cells in tumor microenvironment at single cell resolution.Disclosure InformationY. Arjmand Abbassi: None. N. Fang: None. W. Zhu: None. Y. Zhou: None. Y. Chen: None. U. Deutsch: None.


2006 ◽  
Vol 86 (3) ◽  
pp. 314-321 ◽  
Author(s):  
Dun Zhou ◽  
Rajneesh Srivastava ◽  
Verena Grummel ◽  
Sabine Cepok ◽  
Hans-Peter Hartung ◽  
...  

2018 ◽  
Vol 16 (3) ◽  
pp. 162-176 ◽  
Author(s):  
Hans De Wolf ◽  
Laure Cougnaud ◽  
Kirsten Van Hoorde ◽  
An De Bondt ◽  
Joerg K. Wegner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document