scholarly journals Genome size expansion and the relationship between nuclear DNA content and spore size in the Asplenium monanthes fern complex (Aspleniaceae)

2013 ◽  
Vol 13 (1) ◽  
pp. 219 ◽  
Author(s):  
Robert J Dyer ◽  
Jaume Pellicer ◽  
Vincent Savolainen ◽  
Ilia J Leitch ◽  
Harald Schneider
2015 ◽  
Vol 57 (1) ◽  
pp. 104-113
Author(s):  
Sandra Cichorz ◽  
Maria Gośka ◽  
Monika Rewers

AbstractSinceM. sinensisAnderss.,M. sacchariflorus(Maxim.) Hack. andM. ×giganteusJ.M.Greef & Deuter ex Hodk. and Renvoize have considerably the highest potential for biomass production amongMiscanthusAnderss. species, there is an urgent need to broaden the knowledge about cytological characteristics required for their improvement. In this study our objectives were to assess the genome size variation among eighteenMiscanthusaccessions, as well as estimation of the monoploid genome size (2C and Cx) of theM. sinensiscultivars, which have not been analyzed yet. The characterization of threeMiscanthusspecies was performed with the use of flow cytometry and analysis of the stomatal length. The triploid (2n = 3x = 57)M. sinensis‘Goliath’ andM. ×giganteusclones possessed the highest 2C DNA content (8.34 pg and 7.43 pg, respectively). The intermediate 2C-values were found in the nuclei of the diploid (2n = 2x = 38)M. sinensisaccessions (5.52–5.72 pg), whereas they were the lowest in the diploid (2n = 2x = 38)M. sacchariflorusecotypes (4.58–4.59 pg). The presented study revealed interspecific variation of nuclear DNA content (P<0.01) and therefore allowed for recognition of particular taxa, inter- and intraspecific hybrids and prediction of potential parental components. Moreover, intraspecific genome size variation (P<0.01) was observed inM. sinensiscultivars at 3.62%. The values of the stomatal size obtained for the triploidM. ×giganteus‘Great Britain’ (mean 30.70 μm) or ‘Canada’ (mean 29.67 μm) and diploidM. sinensis‘Graziella’ (mean 29.96 μm) did not differ significantly, therefore this parameter is not recommended for ploidy estimation.


1985 ◽  
Vol 27 (6) ◽  
pp. 766-775 ◽  
Author(s):  
Arturo Martínez ◽  
Héctor D. Ginzo

There is a wide variation in the nuclear DNA content and chromosome size between the species belonging to the T. crassifolia and T. virginiana alliances (all the species but one are native to Central and North America). Also the DNA content per genome decreases when the ploidy level increases within the same specific polyploid complex with three ploidy levels (2x, 4x, and 6x). In contrast, no variation was found in the DNA content per genome between different ploidy levels in the T. fluminensis alliance (all the species are native to South America) where they range from 6x to 22x. Since all the species described here are perennials with various life forms, it was possible to analyze the relationship between the DNA content and their vegetative adaptation to the environment. The more specialized species (geophytes and hemicryptophytes) have a higher amount of DNA than the chamaephytes adapted to live in relatively more mesic regions. In the species living in Central and North America there is a positive correlation between the increase in DNA content and the latitude of their native regions.Key words: Tradescantia, DNA content, geographical distribution, life forms, polyploidy.


Genome ◽  
1989 ◽  
Vol 32 (5) ◽  
pp. 834-839 ◽  
Author(s):  
C. Juan ◽  
E. Petitpierre

The relative amount of C-banded heterochromatin varies strikingly in seven species of tenebrionid beetles, from 25 to 58%, but most species show procentric bands only. Nevertheless, Gonocephalum patruele exhibits an almost completely heterochromatic X chromosome. The nuclear DNA content of Feulgen-stained spermatids has yielded up to a threefold difference, from 0.27 to 0.86 pg, which is not completely in accordance with the amount of C-banded heterochromatin. However, the genome sizes correlate significantly with the total chromosome areas at metaphase I and with the spermatid areas. Furthermore, the genome sizes agree with the subfamilial taxonomic groupings of these tenebrionids.Key words: Tenebrionidae, genome size, C-banding.


Genome ◽  
2004 ◽  
Vol 47 (3) ◽  
pp. 559-564 ◽  
Author(s):  
Ellen M Rasch ◽  
Carol Eunmi Lee ◽  
Grace A Wyngaard

Variation in nuclear DNA content within some eukaryotic species is well documented, but causes and consequences of such variation remain unclear. Here we report genome size of an estuarine and salt-marsh calanoid copepod, Eurytemora affinis, which has recently invaded inland freshwater habitats independently and repeatedly in North America, Europe, and Asia. Adults and embryos of E. affinis from the St. Lawrence River drainage were examined for somatic cell DNA content and the presence or absence of embryonic chromatin diminution, using Feulgen–DNA cytophotometry to determine a diploid or 2C genome size of 0.6–0.7 pg DNA/cell. The majority of somatic cell nuclei, however, have twice this DNA content (1.3 pg/nucleus) in all of the adults examined and possibly represent a population of cells arrested at the G2 stage of the cell cycle or associated with some degree of endopolyploidy. Both suggestions contradict assumptions that DNA replication does not occur in adult tissues during the determinate growth characteristic of copepods. Absence of germ cell nuclei with markedly elevated DNA values, commonly found for species of cyclopoid copepods that show chromatin diminution, indicates that E. affinis lacks this trait. The small genome size and presumed absence of chromatin diminution increase the potential utility of E. affinis as a model for genomic studies on mechanisms of adaptation during freshwater invasions.Key words: copepod, genome size, DNA–Feulgen, calanoid, Eurytemora.


1987 ◽  
Vol 8 (4) ◽  
pp. 315-320 ◽  
Author(s):  
Jelle W.F. Reumer ◽  
Charles-H. Thiébaud

AbstractThe relationship is studied between the volume of osteocyte lacunae and the nuclear DNA content and level of ploidy in the genus Xenopus. The lacunae volume and the DNA content appear strongly correlated. The possible use of this relationship in the study of the evolution of the genus is discussed.


2005 ◽  
Vol 95 (4) ◽  
pp. 309-312 ◽  
Author(s):  
J.K. Brown ◽  
G.M. Lambert ◽  
M. Ghanim ◽  
H. Czosnek ◽  
D.W. Galbraith

AbstractThe nuclear DNA content of the whitefly Bemisia tabaci (Gennnadius) was estimated using flow cytometry. Male and female nuclei were stained with propidium iodide and their DNA content was estimated using chicken red blood cells and Arabidopsis thaliana L. (Brassicaceae) as external standards. The estimated nuclear DNA content of male and female B. tabaci was 1.04 and 2.06 pg, respectively. These results corroborated previous reports based on chromosome counting, which showed that B. tabaci males are haploid and females are diploid. Conversion between DNA content and genome size (1 pg DNA = 980 Mbp) indicate that the haploid genome size of B. tabaci is 1020 Mbp, which is approximately five times the size of the genome of the fruitfly Drosophila melanogaster Meigen. These results provide an important baseline that will facilitate genomics-based research for the B. tabaci complex.


Sign in / Sign up

Export Citation Format

Share Document