scholarly journals Global and local genetic diversity at two microsatellite loci in Plasmodium vivax parasites from Asia, Africa and South America

2014 ◽  
Vol 13 (1) ◽  
pp. 392 ◽  
Author(s):  
Mette L Schousboe ◽  
Samir Ranjitkar ◽  
Rupika S Rajakaruna ◽  
Priyanie H Amerasinghe ◽  
Flemming Konradsen ◽  
...  
2015 ◽  
Author(s):  
David J Winter ◽  
Maria A Pacheco ◽  
Andres Felipe A Vallejo ◽  
Rachel S. Schwartz ◽  
Myriam Arevalo-Herrera ◽  
...  

Plasmodium vivax is the most prevalent malarial species in South America and exerts a substantial burden on the populations is affects. Its control and eventual elimination are a global health priority. Genomic research contributes to this objective by improving our understanding of the biology of P. vivax and through the development of new genetic markers that can be used to monitor efforts to reduce malaria transmission. Here we analyze whole genome data from eight field samples from a region in Cord ́ oba, Colombia where malaria is endemic. We find considerable genetic diversity within this population, a result that contrasts with earlier studies suggesting that P. vivax had limited diversity in the Americas. We also identify a selective sweep around a substitution known to confer resistance to sulphadoxine-pyrimethamine (SP). This is the first observation of a selective sweep for SP resistance in this parasite. These results indicate that P. vivax has been exposed to SP pressure even when the drug is not in use as a first line treatment for patients afflicted by this parasite. We identify multiple non-synonymous substitutions in three other genes known to be involved with drug resistance in Plasmodium species. Finally, we found extensive microsatellite polymorphisms. Using this information we developed 18 microsatellite loci that are polymorphic and easy to score and can thus be used in epidemiological investigations in South America.


2021 ◽  
Vol 15 (8) ◽  
pp. e0009652
Author(s):  
Sonal Kale ◽  
Veena Pande ◽  
Om P. Singh ◽  
Jane M. Carlton ◽  
Prashant K. Mallick

Plasmodium vivax, a major contributor to the malaria burden in India, has the broadest geographic distribution and shows higher genetic diversity than P. falciparum. Here, we investigated the genetic diversity of two leading P. vivax vaccine candidate antigens, at three geographically diverse malaria-endemic regions in India. Pvama1 and Pvmsp119 partial coding sequences were generated from one hundred P. vivax isolates in India (Chennai n = 28, Nadiad n = 50 and Rourkela n = 22) and ~1100 published sequences from Asia, South America, North America, and Oceania regions included. These data were used to assess the genetic diversity and potential for vaccine candidacy of both antigens on a global scale. A total of 44 single nucleotide polymorphism (SNPs) were identified among 100 Indian Pvama1 sequences, including 10 synonymous and 34 nonsynonymous mutations. Nucleotide diversity was higher in Rourkela and Nadiad as compared to Chennai. Nucleotide diversity measures showed a strong balancing selection in Indian and global population for domain I of Pvama1, which suggests that it is a dominant target of the protective immune response. In contrast, the Pvmsp119 region showed highly conserved sequences in India and across the Oceania, South America, North America and Asia, demonstrating low genetic diversity in the global population when compared to Pvama1. Results suggest the possibility of including Pvmsp119 in a multivalent vaccine formulation against P. vivax infections. However, the high genetic diversity seen in Pvama1 would be more challenging for vaccine development.


2006 ◽  
Vol 75 (5) ◽  
pp. 830-835 ◽  
Author(s):  
J. ALFREDO BONILLA ◽  
LLOYD VALIDUM ◽  
RUDOLPH CUMMINGS ◽  
CAROL J. PALMER

2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Natalia Restrepo-Escobar ◽  
Edna J. Márquez

ABSTRACT The Neotropical catfish species Ageneiosus pardalis, Pimelodus grosskopfii, and Sorubim cuspicaudus are important fishery resources in Colombia that show historical declines in their capture. This study used next-generation sequencing with 454 FLX technology (Roche Applied Science) and bioinformatics analysis to develop between 18 and 24 microsatellite loci for these species. The novel microsatellite loci showed high values of polymorphic information content -PIC (A. pardalis: 0.601-0.903, P. grosskopfii: 0.748-0.946 and S. cuspicaudus: 0.383-0.876), and the average number of alleles/locus ranged from 7-15 for A. pardalis, 9-30 for P. grosskopfii and 5-14 for S. cuspicaudus. The average observed and expected heterozygosities were respectively, 0.757 ± 0.035 and 0.834 ± 0.015 for A. pardalis; 0.596 ± 0.040 and 0.881 ± 0.009 for P. grosskopfii; and 0.747 ± 0.031 and 0.757 ± 0.025 for S. cuspicaudus. For future studies, these loci can be useful to estimate the genetic diversity and population structure in these three Neotropical catfishes.


Author(s):  
N. Blohina ◽  
◽  
L. Khrabrova ◽  
A. Zaitcev ◽  
I. Gavrilicheva ◽  
...  

Diversity ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 343
Author(s):  
Luca Vecchioni ◽  
Federico Marrone ◽  
Marco Arculeo ◽  
Uwe Fritz ◽  
Melita Vamberger

The geographical pattern of genetic diversity was investigated in the endemic Sicilian pond turtle Emys trinacris across its entire distribution range, using 16 microsatellite loci. Overall, 245 specimens of E. trinacris were studied, showing high polymorphic microsatellite loci, with allele numbers ranging from 7 to 30. STRUCTURE and GENELAND analyses showed a noteworthy, geographically based structuring of the studied populations in five well-characterized clusters, supported by a moderate degree of genetic diversity (FST values between 0.075 and 0.160). Possible explanations for the genetic fragmentation observed are provided, where both natural and human-mediated habitat fragmentation of the Sicilian wetlands played a major role in this process. Finally, some conservation and management suggestions aimed at preventing the loss of genetic variability of the species are briefly reported, stressing the importance of considering the five detected clusters as independent Management Units.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Fehintola V. Ajogbasile ◽  
Adeyemi T. Kayode ◽  
Paul E. Oluniyi ◽  
Kazeem O. Akano ◽  
Jessica N. Uwanibe ◽  
...  

Abstract Background Malaria remains a public health burden especially in Nigeria. To develop new malaria control and elimination strategies or refine existing ones, understanding parasite population diversity and transmission patterns is crucial. Methods In this study, characterization of the parasite diversity and structure of Plasmodium falciparum isolates from 633 dried blood spot samples in Nigeria was carried out using 12 microsatellite loci of P. falciparum. These microsatellite loci were amplified via semi-nested polymerase chain reaction (PCR) and fragments were analysed using population genetic tools. Results Estimates of parasite genetic diversity, such as mean number of different alleles (13.52), effective alleles (7.13), allelic richness (11.15) and expected heterozygosity (0.804), were high. Overall linkage disequilibrium was weak (0.006, P < 0.001). Parasite population structure was low (Fst: 0.008–0.105, AMOVA: 0.039). Conclusion The high level of parasite genetic diversity and low population structuring in this study suggests that parasite populations circulating in Nigeria are homogenous. However, higher resolution methods, such as the 24 SNP barcode and whole genome sequencing, may capture more specific parasite genetic signatures circulating in the country. The results obtained can be used as a baseline for parasite genetic diversity and structure, aiding in the formulation of appropriate therapeutic and control strategies in Nigeria.


1999 ◽  
Vol 65 (4) ◽  
pp. 520-526 ◽  
Author(s):  
Uthairat Na-Nakorn ◽  
Nobuhiko Taniguchi ◽  
Estu Nugroho ◽  
Shingo Seki ◽  
Wongpathom Kamonrat

2009 ◽  
Vol 59 (2) ◽  
pp. 169-187 ◽  
Author(s):  
Michal Kozakiewicz ◽  
Alicja Gryczyńska–Siemiątkowska ◽  
Hanna Panagiotopoulou ◽  
Anna Kozakiewicz ◽  
Robert Rutkowski ◽  
...  

AbstractHabitat barriers are considered to be an important factor causing the local reduction of genetic diversity by dividing a population into smaller sections and preventing gene flow between them. However, the “barrier effect” might be different in the case of different species. The effect of geographic distance and water barriers on the genetic structure of populations of two common rodent species – the yellow-necked mouse (Apodemus flavicollis) and the bank vole (Myodes glareolus) living in the area of a lake (on its islands and on two opposite shores) was investigated with the use of microsatellite fragment analysis. The two studied species are characterised by similar habitat requirements, but differ with regard to the socio-spatial structure of the population, individual mobility, capability to cross environmental barriers, and other factors. Trapping was performed for two years in spring and autumn in north-eastern Poland (21°E, 53°N). A total of 160 yellow-necked mouse individuals (7 microsatellite loci) and 346 bank vole individuals (9 microsatellite loci) were analysed. The results of the differentiation analyses (FST and RST) have shown that both the barrier which is formed by a ca. 300 m wide belt of water (between the island and the mainland) and the actual distance of approximately 10 km in continuous populations are sufficient to create genetic differentiation within both species. The differences between local populations living on opposite lake shores are the smallest; differences between any one of them and the island populations are more distinct. All of the genetic diversity indices (the mean number of alleles, mean allelic richness, as well as the observed and expected heterozygosity) of the local populations from the lakeshores were significantly higher than of the small island populations of these two species separated by the water barrier. The more profound “isolation effect” in the case of the island populations of the bank vole, in comparison to the yellow-necked mouse populations, seems to result not only from the lower mobility of the bank vole species, but may also be attributed to other differences in the animals' behaviour.


Sign in / Sign up

Export Citation Format

Share Document