scholarly journals Spatial heterogeneity of malaria vectors and malaria transmission risk estimated using odour-baited mosquito traps

2014 ◽  
Vol 13 (S1) ◽  
Author(s):  
Alexandra Hiscox ◽  
Tobias Homan ◽  
Corné Vreugdenhil ◽  
Bruno Otieno ◽  
Anthony Kibet ◽  
...  
2020 ◽  
Author(s):  
Sawdetuo Aristide HIEN ◽  
Dieudonné Diloma Soma ◽  
Simon Pengwende Sawadogo ◽  
Serge Bèwadéyir Poda ◽  
Moussa Namountougou ◽  
...  

Abstract Background The fight against vector is essential in malaria prevention strategies in several endemic countries in Africa. In Burkina Faso, malaria transmission is seasonal in most parts of country, so a single round of spraying should provide effective protection against malaria, provided the insecticide remains effective over the entire malaria transmission season. The outcomes of indoor residual spraying towards curtailing malaria transmission are firstly to decrease the life span of vector mosquitoes and also to reduce the malaria vectors density. Methods CDC light trap and early morning collections by pyrethrum spray catches were performed monthly to determine the change in malaria vector indices in sprayed (Diebougou) and unsprayed sites (Dano). The female’s malaria vectors collected by both methods were used to determine their blood feeding, biting and sporozoites rate and malaria transmission risk estimated by entomological inoculation rate. Results Anopheles gambiae complex composed to Anopheles gambiae, Anopheles coluzzii and Anopheles arabiensis were present throughout the transmission season, but An. gambiae was the predominant species collected (P =0.0005), comprising 88% of the total collected and the most infected species. Malaria vectors densities were significantly lower in sprayed villages (n=4,303) compared with unsprayed villages (n=12,569) during post-spraying period (P = 0.0012). In addition, mean human biting rate of An. gambiae sl and An . funestus ss were significantly lower in sprayed areas compared to unsprayed areas (P<0.05). Overall, malaria vector transmission risk was significant lower in villages which received IRS (P=0.0001) whatever the malaria vectors species ( An. gambiae sl and An. funestus ss). Conclusions The results showed that in the sprayed area (Diebougou), vector densities, human biting rates and malaria transmission risks were very lower than unsprayed areas (Dano). The findings also showed a change in vector behavior especially within An. funestus which became more zoophagic following IRS. The indoor residual spraying could be recommanded as control tool in areas where malaria transmission occured a given period of year.


2021 ◽  
Author(s):  
Sisay Dugassa Lemma ◽  
Mathew Murphy ◽  
Sheleme Chibsa ◽  
Yehualashet Tadesse ◽  
Gedeon Yohannes ◽  
...  

Abstract Background Ethiopia has made great strides in malaria control over the last two decades. However, this progress has not been uniform and one concern has been reported high rates of malaria transmission in large agricultural development areas in western Ethiopia. Improved vector control is one way this transmission might be addressed, but little is known about malaria vectors in this part of the country. Methods To better understand the vector species involved in malaria transmission and their behaviour, human landing collections were conducted in Dangur woreda, Benishangul-Gumuz, between July and December 2017. This period encompasses the months with the highest rain and the peak mosquito population. Mosquitoes were identified to species and tested for the presence of Plasmodium sporozoites. Results The predominant species of the Anopheles collected was Anopheles arabiensis (1,733; i.e. 61.3% of the entire Anopheles), which was also the only species identified with sporozoites (Plasmodium falciparum and Plasmodium vivax). Anopheles arabiensis was collected as early in the evening as 18:00h-19:00h, and host-seeking continued until 5:00h-6:00h. Nearly equal numbers were collected indoors and outdoors. The calculated entomological inoculation rate for An. arabiensis for the study period was 1.41 infectious bites per month. More An. arabiensis were collected inside and outside worker’s shelters than in fields where workers were working at night. Conclusions Anopheles arabiensis is likely to be the primary vector of malaria in the agricultural development areas studied. High rates of human biting took place inside and outdoor near workers’ residential housing. Improved and targeted vector control in this area might considerably reduce malaria transmission.


2020 ◽  
Author(s):  
Sawdetuo Aristide HIEN ◽  
Dieudonné Diloma Soma ◽  
Simon Pengwende Sawadogo ◽  
Serge Bèwadéyir Poda ◽  
Moussa Namountougou ◽  
...  

Abstract Background: The fight against vector is essential in malaria prevention strategies in several endemic countries in Africa. In Burkina Faso, malaria transmission is seasonal in most parts of country, so a single round of spraying should provide effective protection against malaria, provided the insecticide remains effective over the entire malaria transmission season. The outcomes of indoor residual spraying towards curtailing malaria transmission are firstly to decrease the life span of vector mosquitoes and also to reduce the malaria vectors density.Methods : CDC light trap and early morning collections by pyrethrum spray catches were performed monthly to determine the change in malaria vector indices in sprayed (Diebougou) and unsprayed sites (Dano). The female’s malaria vectors collected by both methods were used to determine their blood feeding, biting and sporozoites rate and malaria transmission risk estimated by entomological inoculation rate.Results: Anopheles gambiae complex composed to Anopheles gambiae, Anopheles coluzzii and Anopheles arabiensis were present throughout the transmission season, but An. gambiae was the predominant species collected (P =0.0005), comprising 88% of the total collected and the most infected species. Malaria vectors densities were significantly lower in sprayed villages (n=4,303) compared with unsprayed villages (n=12,569) during post-spraying period (P = 0.0012). In addition, mean human biting rate of An. gambiae sl and An. funestus sl were significantly lower in sprayed areas compared to unsprayed areas (P<0.05). Overall, malaria vector transmission risk was significant lower in villages which received IRS (P=0.0001) whatever the malaria vectors species (An. gambiae sl and An. An. funestus sl).Conclusions: The results showed that in the sprayed area (Diebougou), vector densities, human biting rates and malaria transmission risks were very lower than unsprayed areas (Dano). The findings also showed a change in vector behavior especially within An. funestus which became more zoophagic following IRS. The indoor residual spraying could be recommanded as control tool in areas where malaria transmission occured a given period of year.


2020 ◽  
Author(s):  
Sisay Dugassa Lemma ◽  
Mathew Murphy ◽  
Sheleme Chibsa ◽  
Yehualashet Tadesse ◽  
Gedeon Yohannes ◽  
...  

Abstract Background: Ethiopia has made great strides in malaria control. However, this progress has not been uniform and one concern has been reported high rates of malaria transmission in large agricultural development areas in western Ethiopia. Improved vector control is one way this transmission might be addressed, but little is known about malaria vectors in this part of the country. Methods: To better understand the vector species involved in malaria transmission and their behavior, human landing collections were conducted in Dangur woreda, Benishangul-Gumuz, between July and December 2017. Mosquitoes were identified to species and tested for presence of Plasmodium sporozoites. Results: The predominant species collected was Anopheles arabiensis (61.3% of all Anopheles), which was also the only species identified with sporozoites (P. falciparum and P. vivax). Anopheles arabiensis was collected as early in the evening as 18:00h-19:00h, and host-seeking continued until 5:00h-6:00h. Nearly equal numbers were collected indoors and outdoors. The calculated entomological inoculation rate for An. arabiensis for the study period was 1.41 infectious bites per month. More An. arabiensis were collected inside and outside worker’s shelters than in fields where workers were working at night. Conclusions: An. arabiensis is likely to be the primary vector of malaria in the agricultural development areas studied. High rates of human biting took place inside and outdoor near workers’ residential housing. Improved and targeted vector control in this area might considerably reduce malaria transmission.


2018 ◽  
Vol 3 ◽  
pp. 164 ◽  
Author(s):  
Patricia Doumbe-Belisse ◽  
Carmene Sandra Ngadjeu ◽  
Nadege Sonhafouo-Chiana ◽  
Abdou Talipouo ◽  
Landre Djamouko-Djonkam ◽  
...  

Background: Malaria remains a major public health problem in Cameroon; however, despite reports on the adaptation of anopheline species to urban habitats, there is still not enough information on malaria transmission pattern in urban settings. In the frame of a larval control trial in the city of Yaoundé, we conducted baseline surveys to assess malaria transmission dynamics in this city. Methods: Adult mosquitoes were collected indoors and outdoors using CDC light traps and human landing catches from March 2017 to March 2018 in 30 districts of Yaoundé, Cameroon. Mosquitoes were sorted by genus and identified to the species level using PCR. The TaqMan method and ELISA were used to determine mosquito infection status to Plasmodium. Bioassays were conducted to assess female Anopheles gambiae susceptibility to insecticides. Results: A total of 218,991 mosquitoes were collected. The main malaria vectors were An. gambiae s.l. (n=6154) and An. funestus s.l. (n=229). Of the 1476 An. gambiae s.l. processed by PCR, 92.19% were An. coluzzii and 7.81% An. gambiae. An. funestus s.l. was composed of 93.01% (173/186) An. funestus and 4.84% (13/186) An. leesoni. The average biting rate of anopheline was significantly high outdoor than indoor (P=0.013). Seasonal variation in mosquito abundance and biting rate was recorded. The infection rate by Plasmodium falciparum was 2.13% (104/4893 mosquitoes processed). The annual entomological inoculation rate was found to vary from 0 to 92 infective bites/man/year (ib/m/y). Malaria transmission risk was high outdoor (66.65 ib/m/y) compared to indoor (31.14 ib/m/y). An. gambiae s.l. was found highly resistant to DDT, permethrin and deltamethrin. High prevalence of the West Africa kdr allele 1014F was recorded and this was not found to influence An. gambiae s.l. infection status.   Conclusion: The study suggests high malaria transmission occurring in the city of Yaoundé and call for immediate actions to improve control strategies.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Sisay Dugassa ◽  
Mathew Murphy ◽  
Sheleme Chibsa ◽  
Yehualashet Tadesse ◽  
Gedeon Yohannes ◽  
...  

Abstract Background Ethiopia has made great strides in malaria control over the last two decades. However, this progress has not been uniform and one concern has been reported high rates of malaria transmission in large agricultural development areas in western Ethiopia. Improved vector control is one way this transmission might be addressed, but little is known about malaria vectors in this part of the country. Methods To better understand the vector species involved in malaria transmission and their behaviour, human landing collections were conducted in Dangur woreda, Benishangul-Gumuz, between July and December 2017. This period encompasses the months with the highest rain and the peak mosquito population. Mosquitoes were identified to species and tested for the presence of Plasmodium sporozoites. Results The predominant species of the Anopheles collected was Anopheles arabiensis (1,733; i.e. 61.3 % of the entire Anopheles), which was also the only species identified with sporozoites (Plasmodium falciparum and Plasmodium vivax). Anopheles arabiensis was collected as early in the evening as 18:00 h-19:00 h, and host-seeking continued until 5:00 h-6:00 h. Nearly equal numbers were collected indoors and outdoors. The calculated entomological inoculation rate for An. arabiensis for the study period was 1.41 infectious bites per month. More An. arabiensis were collected inside and outside worker’s shelters than in fields where workers were working at night. Conclusions Anopheles arabiensis is likely to be the primary vector of malaria in the agricultural development areas studied. High rates of human biting took place inside and outdoor near workers’ residential housing. Improved and targeted vector control in this area might considerably reduce malaria transmission.


2010 ◽  
Vol 9 (1) ◽  
Author(s):  
Vanessa Machault ◽  
Cécile Vignolles ◽  
Frédéric Pagès ◽  
Libasse Gadiaga ◽  
Abdoulaye Gaye ◽  
...  

2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Charles Kakilla ◽  
Alphaxard Manjurano ◽  
Karen Nelwin ◽  
Jackline Martin ◽  
Fabian Mashauri ◽  
...  

Abstract Background Vector control through long-lasting insecticidal nets (LLINs) and focal indoor residual spraying (IRS) is a major component of the Tanzania national malaria control strategy. In mainland Tanzania, IRS has been conducted annually around Lake Victoria basin since 2007. Due to pyrethroid resistance in malaria vectors, use of pyrethroids for IRS was phased out and from 2014 to 2017 pirimiphos-methyl (Actellic® 300CS) was sprayed in regions of Kagera, Geita, Mwanza, and Mara. Entomological surveillance was conducted in 10 sprayed and 4 unsprayed sites to determine the impact of IRS on entomological indices related to malaria transmission risk. Methods WHO cone bioassays were conducted monthly on interior house walls to determine residual efficacy of pirimiphos-methyl CS. Indoor CDC light traps with or without bottle rotator were hung next to protected sleepers indoors and also set outdoors (unbaited) as a proxy measure for indoor and outdoor biting rate and time of biting. Prokopack aspirators were used indoors to capture resting malaria vectors. A sub-sample of Anopheles was tested by PCR to determine species identity and ELISA for sporozoite rate. Results Annual IRS with Actellic® 300CS from 2015 to 2017 was effective on sprayed walls for a mean of 7 months in cone bioassay. PCR of 2016 and 2017 samples showed vector populations were predominantly Anopheles arabiensis (58.1%, n = 4,403 IRS sites, 58%, n = 2,441 unsprayed sites). There was a greater proportion of Anopheles funestus sensu stricto in unsprayed sites (20.4%, n = 858) than in sprayed sites (7.9%, n = 595) and fewer Anopheles parensis (2%, n = 85 unsprayed, 7.8%, n = 591 sprayed). Biting peaks of Anopheles gambiae sensu lato (s.l.) followed periods of rainfall occurring between October and April, but were generally lower in sprayed sites than unsprayed. In most sprayed sites, An. gambiae s.l. indoor densities increased between January and February, i.e., 10–12 months after IRS. The predominant species An. arabiensis had a sporozoite rate in 2017 of 2.0% (95% CI 1.4–2.9) in unsprayed sites compared to 0.8% (95% CI 0.5–1.3) in sprayed sites (p = 0.003). Sporozoite rates were also lower for An. funestus collected in sprayed sites. Conclusion This study contributes to the understanding of malaria vector species composition, behaviour and transmission risk following IRS around Lake Victoria and can be used to guide malaria vector control strategies in Tanzania.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Alizée Chemison ◽  
Gilles Ramstein ◽  
Adrian M. Tompkins ◽  
Dimitri Defrance ◽  
Guigone Camus ◽  
...  

AbstractStudies about the impact of future climate change on diseases have mostly focused on standard Representative Concentration Pathway climate change scenarios. These scenarios do not account for the non-linear dynamics of the climate system. A rapid ice-sheet melting could occur, impacting climate and consequently societies. Here, we investigate the additional impact of a rapid ice-sheet melting of Greenland on climate and malaria transmission in Africa using several malaria models driven by Institute Pierre Simon Laplace climate simulations. Results reveal that our melting scenario could moderate the simulated increase in malaria risk over East Africa, due to cooling and drying effects, cause a largest decrease in malaria transmission risk over West Africa and drive malaria emergence in southern Africa associated with a significant southward shift of the African rain-belt. We argue that the effect of such ice-sheet melting should be investigated further in future public health and agriculture climate change risk assessments.


Sign in / Sign up

Export Citation Format

Share Document