scholarly journals Antioxidant and potential anti-inflammatory activity of extracts and formulations of white tea, rose, and witch hazel on primary human dermal fibroblast cells

2011 ◽  
Vol 8 (1) ◽  
pp. 27 ◽  
Author(s):  
Tamsyn SA Thring ◽  
Pauline Hili ◽  
Declan P Naughton
Marine Drugs ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 38
Author(s):  
Chi-Jen Tai ◽  
Chiung-Yao Huang ◽  
Atallah F. Ahmed ◽  
Raha S. Orfali ◽  
Walied M. Alarif ◽  
...  

Chemical investigation of a Red Sea Spongia sp. led to the isolation of four new compounds, i.e., 17-dehydroxysponalactone (1), a carboxylic acid, spongiafuranic acid A (2), one hydroxamic acid, spongiafuranohydroxamic acid A (3), and a furanyl trinorsesterpenoid 16-epi-irciformonin G (4), along with three known metabolites (−)-sponalisolide B (5), 18-nor- 3,17-dihydroxy-spongia-3,13(16),14-trien-2-one (6), and cholesta-7-ene-3β,5α-diol-6-one (7). The biosynthetic pathway for the molecular skeleton of 1 and related compounds was postulated for the first time. Anti-inflammatory activity of these metabolites to inhibit superoxide anion generation and elastase release in N-formyl-methionyl-leucyl phenylalanine/cytochalasin B (fMLF/CB)-induced human neutrophil cells and cytotoxicity of these compounds toward three cancer cell lines and one human dermal fibroblast cell line were assayed. Compound 1 was found to significantly reduce the superoxide anion generation and elastase release at a concentration of 10 μM, and compound 5 was also found to display strong inhibitory activity against superoxide anion generation at the same concentration. Due to the noncytotoxic activity and the potent inhibitory effect toward the superoxide anion generation and elastase release, 1 and 5 can be considered to be promising anti-inflammatory agents.


2019 ◽  
Vol 18 (1) ◽  
pp. 56-64 ◽  
Author(s):  
Gulsah Gundogdu ◽  
Koksal Gundogdu ◽  
Kemal Alp Nalci ◽  
Alper Kursat Demirkaya ◽  
Seymanur Yılmaz Tascı ◽  
...  

Parietin is one of the well-known anthraquinone compounds that can be extracted from Rheum ribes L. In this study, we aimed to investigate the effects of parietin isolated from Rheum ribes L on an in vitro wound model using human dermal fibroblast cells and compare its effectiveness against zinc. The antioxidant effect of parietin was determined by using the 1,1-diphenyl-2-picrylhydrazine (DPPH) method. Human dermal fibroblast cells were cultured in proculture medium and were kept until 100% confluence was achieved. The wound model was created by using a pipette tip. After that, different concentrations of parietin and zinc (final concentrations in the well to be 5-250 µM and 25-200 µM, respectively) were added into the medium. The proliferation-inducing effect on cell viability was determined by using MTT assay. Images of cells were taken at 0, 12, and 24 hours. According to the DPPH method, parietin exhibited have antioxidant activity. According to the MTT results, parietin exhibited significant proliferation-inducing effect on cell viability in a dose range of 5 to 10 M, and zinc showed significant proliferation-inducing effect on cell viability at dose 50 µM ( P < .05). In addition, the image of cell proliferation was also shown at the same doses at 24 hours. In this study, we claim that parietin induces cell proliferation at low doses in cases of dermal fibroblast loss. In conclusion, parietin as an alternative to zinc in wound healing could be used by clinicians in the future with more extensive studies.


2016 ◽  
Vol 48 (6) ◽  
pp. 616-623 ◽  
Author(s):  
Sae Bin Lee ◽  
A-ram Lim ◽  
Dong Kyun Rah ◽  
Kyung Soo Kim ◽  
Hyun Jin Min

Sign in / Sign up

Export Citation Format

Share Document