scholarly journals Effects of MMP-9 inhibition by doxycycline on proteome of lungs in high tidal volume mechanical ventilation-induced acute lung injury

2010 ◽  
Vol 8 (1) ◽  
pp. 3 ◽  
Author(s):  
Adrian Doroszko ◽  
Thomas S Hurst ◽  
Dorota Polewicz ◽  
Jolanta Sawicka ◽  
Justyna Fert-Bober ◽  
...  
2008 ◽  
Vol 160 (1) ◽  
pp. 99-108 ◽  
Author(s):  
You-Lan Yang ◽  
Gau-Jun Tang ◽  
Yuh-Lin Wu ◽  
Huey-Wen Yien ◽  
Tzong-Shyuan Lee ◽  
...  

2008 ◽  
Vol 108 (2) ◽  
pp. 261-268 ◽  
Author(s):  
Rosanna Vaschetto ◽  
Jan W. Kuiper ◽  
Shyh Ren Chiang ◽  
Jack J. Haitsma ◽  
Jonathan W. Juco ◽  
...  

Background Mechanical ventilation can induce organ injury associated with overwhelming inflammatory responses. Excessive activation of poly(adenosine diphosphate-ribose) polymerase enzyme after massive DNA damage may aggravate inflammatory responses. Therefore, the authors hypothesized that the pharmacologic inhibition of poly(adenosine diphosphate-ribose) polymerase by PJ-34 would attenuate ventilator-induced lung injury. Methods Anesthetized rats were subjected to intratracheal instillation of lipopolysaccharide at a dose of 6 mg/kg. The animals were then randomly assigned to receive mechanical ventilation at either low tidal volume (6 ml/kg) with 5 cm H2O positive end-expiratory pressure or high tidal volume (15 ml/kg) with zero positive end-expiratory pressure, in the presence and absence of intravenous administration of PJ-34. Results The high-tidal-volume ventilation resulted in an increase in poly(adenosine diphosphate-ribose) polymerase activity in the lung. The treatment with PJ-34 maintained a greater oxygenation and a lower airway plateau pressure than the vehicle control group. This was associated with a decreased level of interleukin 6, active plasminogen activator inhibitor 1 in the lung, attenuated leukocyte lung transmigration, and reduced pulmonary edema and apoptosis. The administration of PJ-34 also decreased the systemic levels of tumor necrosis factor alpha and interleukin 6, and attenuated the degree of apoptosis in the kidney. Conclusion The pharmacologic inhibition of poly(adenosine diphosphate-ribose) polymerase reduces ventilator-induced lung injury and protects kidney function.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yang Zhang ◽  
Lulu Jiang ◽  
Tianfeng Huang ◽  
Dahao Lu ◽  
Yue Song ◽  
...  

Abstract Background Mechanical ventilation can induce or aggravate lung injury, which is termed ventilator-induced lung injury (VILI). Piezo1 is a key element of the mechanotransduction process and can transduce mechanical signals into biological signals by mediating Ca2+ influx, which in turn regulates cytoskeletal remodeling and stress alterations. We hypothesized that it plays an important role in the occurrence of VILI, and investigated the underlying mechanisms. Methods High tidal volume mechanical ventilation and high magnitude cyclic stretch were performed on Sprague–Dawley rats, and A549 and human pulmonary microvascular endothelial cells, respectively, to establish VILI models. Immunohistochemical staining, flow cytometry, histological examination, enzyme-linked immunosorbent assay, western blotting, quantitative real-time polymerase chain reaction and survival curves were used to assess the effect of Piezo1 on induction of lung injury, as well as the signaling pathways involved. Results We observed that Piezo1 expression increased in the lungs after high tidal volume mechanical ventilation and in cyclic stretch-treated cells. Mechanistically, we observed the enhanced expression of RhoA/ROCK1 in both cyclic stretch and Yoda1-treated cells, while the deficiency or inhibition of Piezo1 dramatically antagonized RhoA/ROCK1 expression. Furthermore, blockade of RhoA/ROCK1 signaling using an inhibitor did not affect Piezo1 expression. GSMTx4 was used to inhibit Piezo1, which alleviated VILI-induced pathologic changes, water content and protein leakage in the lungs, and the induction of systemic inflammatory mediators, and improved the 7-day mortality rate in the model rats. Conclusions These findings indicate that Piezo1 affects the development and progression of VILI through promotion of RhoA/ROCK1 signaling.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
A. P. J. Vlaar ◽  
M. T. Kuipers ◽  
J. J. Hofstra ◽  
E. K. Wolthuis ◽  
C. W. Wieland ◽  
...  

Purpose. Onset of transfusion-related acute lung injury (TRALI) is suggested to be a threshold-event. Data is lacking on the relation between titer of antibodies infused and onset of TRALI. We determined whether onset of TRALI is dependent on the titer of MHC-I antibodies infused in a combined model of ventilator-induced lung injury and antibody-induced TRALl.Methods. BALB/c mice were ventilated for five hours with low (7.5 ml/kg) or high (15 ml/kg) tidal volume. After three hours of MV, TRALI was induced by infusion of 0.5 mg/kg, 2.0 mg/kg or 4.5 mg/kg MHC-I antibodies. Control animals received vehicle. After five hours of MV, animals were sacrificed.Results. MV with high tidal volumes resulted in increased levels of all markers of lung injury compared to animals ventilated with low tidal MV. In ventilator-induced lung injury, infusion of 4.5 mg/kg of antibodies further increased pulmonary wet-to-dry ratio, pulmonary neutrophil influx and pulmonary KC levels, whereas infusion of lower dose of antibodies did not augment lung injury. In contrast, mice ventilated with low tidal volumes did not develop lung injury, irrespective of the dose of antibody used.Conclusions. In the presence of injurious MV, onset of TRALI depends on the titer of antibodies infused.


Critical Care ◽  
2008 ◽  
Vol 12 (Suppl 2) ◽  
pp. P290
Author(s):  
II Siempos ◽  
P Kopterides ◽  
NA Maniatis ◽  
C Magkou ◽  
TK Ntaidou ◽  
...  

2021 ◽  
Author(s):  
Yang Zhang ◽  
Lulu Jiang ◽  
Tianfeng Huang ◽  
Dahao Lu ◽  
Yue Song ◽  
...  

Abstract Background: Mechanical ventilation can induce or aggravate lung injury, which is termed ventilator‑induced lung injury. Piezo1 is a key element of the mechanotransduction process and can transduce mechanical signals into biological signals by mediating Ca2+ influx, which in turn regulates cytoskeletal remodeling and stress alterations. We hypothesized that it plays an important role in the occurrence of ventilator‑induced lung injury, and we investigated the underlying mechanisms. Methods: High tidal volume mechanical ventilation and high magnitude cyclic stretch were performed on Sprague Dawley rats, and A549 and human pulmonary microvascular endothelial cells, respectively, to establish ventilator‑induced lung injury models. Immunohistochemical staining, flow cytometry, histological examination, enzyme-linked immunosorbent assay, western blotting, quantitative real-time reverse transcription-PCR and survival curves were used to assess the effect of Piezo1 on induction of lung injury, as well as the signaling pathways involved.Results: We observed that Piezo1 expression increased in the lungs after high tidal volume mechanical ventilation and in cyclic stretch-treated cells. Mechanistically, we observed the enhanced expression of RhoA/ROCK1 in both cyclic stretch and Yoda1-treated cells, while the deficiency or inhibition of Piezo1 dramatically antagonized RhoA/ROCK1 expression. Furthermore, blockade of RhoA/ROCK1 signaling using an inhibitor did not affect Piezo1 expression. GSMTx4 was used to inhibit Piezo1, which alleviated ventilator‑induced lung injury-induced pathologic changes, water content and protein leakage in the lungs, and the induction of systemic inflammatory mediators, and improved the 7-day mortality rate in the model rats. Conclusions: These findings indicate that Piezo1 affects the development and progression of ventilator‑induced lung injury through promotion of RhoA/ROCK1 signaling.


Sign in / Sign up

Export Citation Format

Share Document