neutrophil influx
Recently Published Documents


TOTAL DOCUMENTS

141
(FIVE YEARS 7)

H-INDEX

41
(FIVE YEARS 2)

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Nicole A. M. Dekker ◽  
Anoek L. I. van Leeuwen ◽  
Matijs van Meurs ◽  
Jill Moser ◽  
Jeannette E. Pankras ◽  
...  

Abstract Background Acute kidney injury is a severe complication following cardiopulmonary bypass (CPB) and is associated with capillary leakage and microcirculatory perfusion disturbances. CPB-induced thrombin release results in capillary hyperpermeability via activation of protease-activated receptor 1 (PAR1). We investigated whether aprotinin, which is thought to prevent thrombin from activating PAR1, preserves renal endothelial structure, reduces renal edema and preserves renal perfusion and reduces renal injury following CPB. Methods Rats were subjected to CPB after treatment with 33.000 KIU/kg aprotinin (n = 15) or PBS (n = 15) as control. A secondary dose of 33.000 KIU/kg aprotinin was given 60 min after initiation of CPB. Cremaster and renal microcirculatory perfusion were assessed using intravital microscopy and contrast echography before CPB and 10 and 60 min after weaning from CPB. Renal edema was determined by wet/dry weight ratio and renal endothelial structure by electron microscopy. Renal PAR1 gene and protein expression and markers of renal injury were determined. Results CPB reduced cremaster microcirculatory perfusion by 2.5-fold (15 (10–16) to 6 (2–10) perfused microvessels, p < 0.0001) and renal perfusion by 1.6-fold (202 (67–599) to 129 (31–292) au/sec, p = 0.03) in control animals. Both did not restore 60 min post-CPB. This was paralleled by increased plasma creatinine (p < 0.01), neutrophil gelatinase-associated lipocalin (NGAL; p = 0.003) and kidney injury molecule-1 (KIM-1; p < 0.01). Aprotinin treatment preserved cremaster microcirculatory perfusion following CPB (12 (7–15) vs. 6 (2–10) perfused microvessels, p = 0.002), but not renal perfusion (96 (35–313) vs. 129 (31–292) au/s, p > 0.9) compared to untreated rats. Aprotinin treatment reduced endothelial gap formation (0.5 ± 0.5 vs. 3.1 ± 1.4 gaps, p < 0.0001), kidney wet/dry weight ratio (4.6 ± 0.2 vs. 4.4 ± 0.2, p = 0.046), and fluid requirements (3.9 ± 3.3 vs. 7.5 ± 3.0 ml, p = 0.006) compared to untreated rats. In addition, aprotinin treatment reduced tubulointerstitial neutrophil influx by 1.7-fold compared to untreated rats (30.7 ± 22.1 vs. 53.2 ± 17.2 neutrophil influx/section, p = 0.009). No differences were observed in renal PAR1 expression and plasma creatinine, NGAL or KIM-1 between groups. Conclusions Aprotinin did not improve renal perfusion nor reduce renal injury during the first hour following experimental CPB despite preservation of renal endothelial integrity and reduction of renal edema.


Author(s):  
Morgan Green ◽  
Natalie R Lindgren ◽  
Alexander G Henderson ◽  
Johnathan D Keith ◽  
Ashley M Oden ◽  
...  

Animal models have been highly informative for understanding the pathogenesis and progression of cystic fibrosis (CF) lung disease. In particular, the CF rat models recently developed have addressed mechanistic causes of the airway mucus defect characteristic of CF, and how these may change when CFTR activity is restored using new modulator therapies. We hypothesized that inflammatory changes to the airway would develop spontaneously and progressively, and that these changes would be resolved with modulator therapy. To test this, we used a humanized-CFTR rat expressing the G551D variant that responds to the CFTR modulator ivacaftor. Markers typically found in the CF lung were assessed, including neutrophil influx, small airway histopathology, and inflammatory cytokine concentration. Young hG551D rats did not express inflammatory cytokines at baseline but did upregulate these in response to inflammatory trigger. As the hG551D rats aged, histopathology worsened, accompanied by neutrophil influx into the airway and increasing concentrations of TNF-α, IL-1α, and IL-6 in the airways. Ivacaftor administration reduced concentrations of these cytokines when administered to the rats at baseline but was less effective in the rats that had also received inflammatory stimulus. Therefore, we conclude that administration of ivacaftor resulted in an incomplete resolution of inflammation when rats received an external trigger, suggesting that CFTR activation may not be enough to resolve inflammation in the lungs of patients with CF.


2020 ◽  
Vol 251 (2) ◽  
pp. 175-186 ◽  
Author(s):  
Rusan A Catar ◽  
Lei Chen ◽  
Simone M Cuff ◽  
Ann Kift‐Morgan ◽  
Matthias Eberl ◽  
...  
Keyword(s):  

2020 ◽  
Vol 222 (3) ◽  
pp. 407-416 ◽  
Author(s):  
Srijon K Banerjee ◽  
Samantha D Crane ◽  
Roger D Pechous

Abstract Early after inhalation, Yersinia pestis replicates to high numbers in the airways in the absence of disease symptoms or notable inflammatory responses to cause primary pneumonic plague. The plasminogen activator protease (Pla) is a critical Y. pestis virulence factor that is important for early bacterial growth in the lung via an unknown mechanism. In this article, we define a dual role for Pla in the initial stages of pulmonary infection. We show that Pla functions as an adhesin independent of its proteolytic function to suppress early neutrophil influx into the lungs, and that Pla enzymatic activity contributes to bacterial resistance to neutrophil-mediated bacterial killing. Our results suggest that the fate of Y. pestis infection of the lung is decided extremely early during infection and that Pla plays a dual role to tilt the balance in favor of the pathogen.


Blood ◽  
2019 ◽  
Vol 133 (12) ◽  
pp. 1335-1345 ◽  
Author(s):  
Sagar Paudel ◽  
Pankaj Baral ◽  
Laxman Ghimire ◽  
Scott Bergeron ◽  
Liliang Jin ◽  
...  

Abstract Neutrophil migration to the site of bacterial infection is a critical step in host defense. Exclusively produced in the bone marrow, neutrophil release into the blood is tightly controlled. Although the chemokine CXCL1 induces neutrophil influx during bacterial infections, its role in regulating neutrophil recruitment, granulopoiesis, and neutrophil mobilization in response to lung infection-induced sepsis is unclear. Here, we used a murine model of intrapulmonary Streptococcus pneumoniae infection to investigate the role of CXCL1 in host defense, granulopoiesis, and neutrophil mobilization. Our results demonstrate that CXCL1 augments neutrophil influx to control bacterial growth in the lungs, as well as bacterial dissemination, resulting in improved host survival. This was shown in Cxcl1−/− mice, which exhibited defective amplification of early neutrophil precursors in granulocytic compartments, and CD62L- and CD49d-dependent neutrophil release from the marrow. Administration of recombinant CXCL2 and CXCL5 after infection rescues the impairments in neutrophil-dependent host defense in Cxcl1−/− mice. Taken together, these findings identify CXCL1 as a central player in host defense, granulopoiesis, and mobilization of neutrophils during Gram-positive bacterial pneumonia-induced sepsis.


Blood ◽  
2018 ◽  
Vol 131 (16) ◽  
pp. 1858-1869 ◽  
Author(s):  
Jan Hülsdünker ◽  
Katja J. Ottmüller ◽  
Hannes P. Neeff ◽  
Motoko Koyama ◽  
Zhan Gao ◽  
...  

Key Points Neutrophils migrate to the ileum after conditioning and contribute to GVHD. JAK1/JAK2 inhibition reduces neutrophil influx and MHC-II expression in the mesenteric lymph node.


2017 ◽  
Author(s):  
Andrew J Olive ◽  
Clare M Smith ◽  
Michael C Kiritsy ◽  
Christopher M Sassetti

SummaryProtection from infectious disease relies on two distinct mechanisms. “Antimicrobial resistance” directly inhibits pathogen growth, whereas “infection tolerance” controls tissue damage. A single immune-mediator can differentially contribute to these mechanisms in distinct contexts, confounding our understanding of protection to different pathogens. For example, the NADPH-dependent phagocyte oxidase complex (Phox) produces anti-microbial superoxides and protects from tuberculosis in humans. However, Phox-deficient mice do not display the expected defect in resistance toM. tuberculosisleaving the role of this complex unclear. We re-examined the mechanisms by which Phox contributes to protection from TB and found that mice lacking the Cybb subunit of Phox suffered from a specific defect in tolerance, which was due to unregulated Caspase1 activation, IL-1β production, and neutrophil influx into the lung. These studies demonstrate that Phox-derived superoxide protect against TB by promoting tolerance to persistent infection, and highlight a central role for Caspase1 in regulating TB disease progression.


2017 ◽  
Vol 312 (6) ◽  
pp. L903-L911 ◽  
Author(s):  
Sunit Singla ◽  
Jiwang Chen ◽  
Shruthi Sethuraman ◽  
Justin R. Sysol ◽  
Amulya Gampa ◽  
...  

The tumor suppressor WW domain-containing oxidoreductase (WWOX) exhibits regulatory interactions with an array of transcription factors and signaling molecules that are positioned at the well-known crossroads between inflammation and cancer. WWOX is also subject to downregulation by genotoxic environmental exposures, making it of potential interest to the study of lung pathobiology. Knockdown of lung WWOX expression in mice was observed to cause neutrophil influx and was accompanied by a corresponding vascular leak and inflammatory cytokine production. In cultured human alveolar epithelial cells, loss of WWOX expression resulted in increased c-Jun- and IL-8-dependent neutrophil chemotaxis toward cell monolayers. WWOX was observed to directly interact with c-Jun in these cells, and its absence resulted in increased nuclear translocation of c-Jun. Finally, inhibition of the c-Jun-activating kinase JNK abrogated the lung neutrophil influx observed during WWOX knockdown in mice. Altogether, these observations represent a novel mechanism of pulmonary neutrophil influx that is highly relevant to the pathobiology and potential treatment of a number of different lung inflammatory conditions.


Sign in / Sign up

Export Citation Format

Share Document