scholarly journals Evaluation of the potential for energy saving in macrocell and femtocell networks using a heuristic introducing sleep modes in base stations

Author(s):  
Willem Vereecken ◽  
Margot Deruyck ◽  
Didier Colle ◽  
Wout Joseph ◽  
Mario Pickavet ◽  
...  
2021 ◽  
Author(s):  
Joydev Ghosh

<div>In OFDMA femtocell networks, the licensed spectrum of the macro users (MUs) are available to the femto users (FUs), on the condition that they do not spark off notable interference to the MUs. We contemplate wireless data for femto user (FU) / secondary user (SU) in cognitive radio (CR) networks where the frame structure split up into sensing and data transmission slots. Moreover, we consider soft frequency reuse (SFR) technique to improve secondary network throughput by increasing the macrocell edge user power control factor. SFR applies a frequency reuse factor (FRF) of 1 to the terminal located at the cell centre for that all base stations (BSs) share the total spectrum. But for the transmission on each sub-carrier the BSs are confined to a certain power level. However, more than 1 FRF uses for the terminals near to the macrocell edge area. In this context, we conceptualize the cognitive femtocell in the uplink in which the femtocell access point (FAP) initially perceive by sensing to find out the availability of MU after that FAP revamps its action correspondingly. Appropriately, when the MU is sensed to be non-existent, the FU transmits at maximum power. In other respect, the FAP make the best use of the transmit power of the FU to optimize the secondary network throughput concern to outage limitation of the MU. Finally, effectiveness of the scheme is verified by the extensive matlab simulation.</div>


Author(s):  
Saba Al-Rubaye ◽  
Anwer Al-Dulaimi ◽  
John Cosmas

Cognitive femtocell is a promising technology for the next generation wireless networks to improve the efficiency of spectrum utilization, coverage, and to attain higher data rates for indoor communications. In this chapter, the new Cognitive Femtocell Switching Unit (CFSU) is proposed to support handover management for 10-20 cognitive femtocells as a local geographical cluster. Thus, CFSU acts as a service coordinator between femtocells and macrocell areas to improve spectrum utilization and coexistence. Then, the chapter presents solutions for spectrum handover to achieve guaranteed quality of radio service, spectrum utilization, and enable an excellent local handover management to reduce unnecessary handovers between femtocell base stations. The challenges and solutions that are presented in this chapter have the ability to maintain services by evaluating the requested quality of services.


2021 ◽  
Author(s):  
Joydev Ghosh

<div>In this paper, we articulate the network coverage issues for both Femto Users (FUs) and Macro Users (MUs) located at cell edges. The cognitive-femtocell networks functioning under the vicinity of a macrocell frontier where the parameters such as pathloss, shadowing, Rayleigh fading have considered into the system model. The users, located at network border are positioned far apart from the Macro Base Station (MBS). This can be treated as the underprivileged users. The underprivileged users are to be facilitated by the femto cell base stations to provide uninterrupted QoS. We present on the overall outage probability of Single Input single Output (SISO) users and Single Input Multiple Output (SIMO) users, respectively, by taking several circumstantial components such as such as probability density function (PDF), location gap between base stations (BSs) and users, intra-tier interference and inter-tier interference into account. Further, evaluation has been extended by considering network throughput as the efficiency measures based on the sub-carrier and the power allotment in the dual tier network.</div>


Femto cells are miniature wireless telecommunications base stations that can be placed in different inhibited or industry surroundings moreover as single stand-alone substance or in clusters to afford enhanced cellular coverage inside a building. It is extensively known that cellular coverage, predominantly for data transmission where high quality signal strengths are desirable is not as superior within buildings. By using a miniature domestic base station Femto cell, the cellular routine can be enhanced beside with the promising provision of other services. A cognitive radio network time after time detects handy channels in cellular spectrum, and then frequently varies its transmission or receiving parameters to tolerate further synchronized cellular communications in a given cellular electromagnetic band. Conveying of the free channels among main and minor users, in a specific geographic province at the same time as minimizing infringement amongst all users also known as the Spectrum allotment in cognitive radio networks. In this work MBS, FAP and MUs are presented. Here FAP serves the provision of sub channels and provides power in order to maximize the network effectiveness. Finally achieved maximum throughput for the deployed Macro users (MU) and also the above mentioned problem is solved by dual disintegration method.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Sung-Yeop Pyun ◽  
Woongsup Lee ◽  
Ohyun Jo

Two-tier femtocell networks, in which a large number of femto base stations (BSs) are deployed within a region overlapping with a macrocell, can provide an economical means of increasing user capacity and coverage. Given that femto BSs may be deployed with no cell planning, cross-tier interference generated from a number of macrocells and femtocells can cause severe problems. In particular, a macro mobile station (MS) that transmits uplink data may generate severe interference with adjacent femtocells, which causes performance degradation. In order to solve these problems, two novel resource allocation schemes, optimization and heuristic, are proposed, which efficiently reduce uplink interference in two-tier femtocell networks. Simulation results at the system level verify that both proposed schemes can improve the average capacity of the femtocells, but the heuristic scheme outperforms the optimization scheme in terms of computational complexity.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Woongsup Lee ◽  
Bang Chul Jung

Recently, energy efficiency (EE) of cellular networks has become an important performance metric, and several techniques have been proposed to increase the EE. Among them, turning off base stations (BSs) when not needed is considered as one of the most powerful techniques due to its simple operation and effectiveness. Herein, we propose a novel BS switching-off technique for cooperative femtocell networks where multiple femtocell BSs (FBSs) simultaneously send packets to the same mobile station (MS). Unlike conventional schemes, cooperative operation of FBSs, also known as coordinated multipoint (CoMP) transmission, is considered to determine which BSs are turned off in the proposed technique. We first formulate the optimization problem to find the optimal set of FBSs to be turned off. Then, we propose a suboptimal scheme operating in a distributed manner in order to reduce the computational complexity of the optimal scheme. The suboptimal scheme is based on throughput ratio (TR) which specifies the importance of a particular FBS for the cooperative transmission. Through simulations, we show that the energy consumption can be greatly reduced with the proposed technique, compared with conventional schemes. Moreover, we show that the suboptimal scheme also achieves the near-optimal performance even without the excessive computations.


2021 ◽  
Author(s):  
Joydev Ghosh

<div>In this paper, we articulate the network coverage issues for both Femto Users (FUs) and Macro Users (MUs) located at cell edges. The cognitive-femtocell networks functioning under the vicinity of a macrocell frontier where the parameters such as pathloss, shadowing, Rayleigh fading have considered into the system model. The users, located at network border are positioned far apart from the Macro Base Station (MBS). This can be treated as the underprivileged users. The underprivileged users are to be facilitated by the femto cell base stations to provide uninterrupted QoS. We present on the overall outage probability of Single Input single Output (SISO) users and Single Input Multiple Output (SIMO) users, respectively, by taking several circumstantial components such as such as probability density function (PDF), location gap between base stations (BSs) and users, intra-tier interference and inter-tier interference into account. Further, evaluation has been extended by considering network throughput as the efficiency measures based on the sub-carrier and the power allotment in the dual tier network.</div>


2021 ◽  
Author(s):  
Joydev Ghosh

<div>In OFDMA femtocell networks, the licensed spectrum of the macro users (MUs) are available to the femto users (FUs), on the condition that they do not spark off notable interference to the MUs. We contemplate wireless data for femto user (FU) / secondary user (SU) in cognitive radio (CR) networks where the frame structure split up into sensing and data transmission slots. Moreover, we consider soft frequency reuse (SFR) technique to improve secondary network throughput by increasing the macrocell edge user power control factor. SFR applies a frequency reuse factor (FRF) of 1 to the terminal located at the cell centre for that all base stations (BSs) share the total spectrum. But for the transmission on each sub-carrier the BSs are confined to a certain power level. However, more than 1 FRF uses for the terminals near to the macrocell edge area. In this context, we conceptualize the cognitive femtocell in the uplink in which the femtocell access point (FAP) initially perceive by sensing to find out the availability of MU after that FAP revamps its action correspondingly. Appropriately, when the MU is sensed to be non-existent, the FU transmits at maximum power. In other respect, the FAP make the best use of the transmit power of the FU to optimize the secondary network throughput concern to outage limitation of the MU. Finally, effectiveness of the scheme is verified by the extensive matlab simulation.</div>


Sign in / Sign up

Export Citation Format

Share Document