scholarly journals Boron neutron capture therapy induces cell cycle arrest and cell apoptosis of glioma stem/progenitor cells in vitro

2013 ◽  
Vol 8 (1) ◽  
pp. 195 ◽  
Author(s):  
Ting Sun ◽  
Zizhu Zhang ◽  
Bin Li ◽  
Guilin Chen ◽  
Xueshun Xie ◽  
...  
2013 ◽  
Vol 27 (4) ◽  
pp. 1196-1204 ◽  
Author(s):  
Fernanda Faião-Flores ◽  
Paulo Rogério Pinto Coelho ◽  
João Dias Toledo Arruda-Neto ◽  
Silvya Stuchi Maria-Engler ◽  
Durvanei Augusto Maria

Author(s):  
Yasushi Shibata ◽  
Akira Matsumura ◽  
Fumiyo Yoshida ◽  
Tetsuya Yamamoto ◽  
Kei Nakai ◽  
...  

2009 ◽  
Vol 14 (6) ◽  
pp. 883-890 ◽  
Author(s):  
Antonella Crivello ◽  
Carlo Nervi ◽  
Roberto Gobetto ◽  
Simonetta Geninatti Crich ◽  
Iboya Szabo ◽  
...  

2016 ◽  
Vol 1 (2) ◽  
pp. 108
Author(s):  
Widarto Widarto ◽  
Isman Mulyadi Tri Atmoko ◽  
Gede Sutresna Wijaya

The quality manajement system program of in vitro / in vivo test facility of  Boron Neutron Capture Therapy (BNCT) methode as quality assurance requirement for utilization of radial pearcing beamport of Kartini research have been done.  Identification and management of technical specification and parameters meassurement of to the radial piercing beamport have been determined for preparing in vitro / in vivo test facility. The parameters are epithermal neutron flux is  9,8243E+05  n cm<sup>-2</sup> s<sup>-1</sup>and  thermal neutron flux is 3,0691E+06 n cm<sup>-2</sup> s<sup>-1</sup>, radiation shielding of parafin,  dimension and size  of piercing radial and instrumentatin and control system for automatic transfer of in vitro / in vivo samplels have been documented. Management system of the documents for fullfil  basic guidance to perform working job of in vitro / in vivo at the piercing radial beamport of Kartini Research Reactor in order purpose utilization of the reactor  for safety worker of the radiation area, society  and invironment beeing safely


2021 ◽  
Vol 11 ◽  
Author(s):  
Lixia Cao ◽  
Shaorong Zhao ◽  
Qianxi Yang ◽  
Zhendong Shi ◽  
Jingjing Liu ◽  
...  

The multidrug-resistant (MDR) phenotype is usually accompanied by an abnormal expression of histone deacetylase (HDAC). Given that HDAC is vital in chromatin remodeling and epigenetics, inhibiting the role of HDAC has become an important approach for tumor treatment. However, the effect of HDAC inhibitors on MDR breast cancer has not been elucidated. This study aim to demonstrate the potential of chidamide (CHI) combined with the chemotherapy drug doxorubicin (DOX) to overcome chemotherapeutic resistance of breast cancer in vitro and in vivo, laying the experimental foundation for the next clinical application. The results showed that, CHI combined with DOX showed significant cytotoxicity to MDR breast cancer cells in vitro and in vivo compared with the CHI monotherapy. The cell cycle distribution results showed that CHI caused G0/G1 cell cycle arrest and inhibited cell growth regardless of the addition of DOX. At the same time, annexin V staining and TUNEL staining results showed that CHI enhanced the number of cell apoptosis in drug-resistant cells. The western blot analysis found that p53 was activated in the CHI-treated group and combined treatment group, and then the activated p53 up-regulated p21, apoptosis regulator recombinant protein (Puma), and pro-apoptotic protein Bax, down-regulated the apoptotic proteins Bcl-xL and Bcl-2, and activated the caspase cascade to induce apoptosis.


Oncotarget ◽  
2015 ◽  
Vol 6 (35) ◽  
pp. 37083-37097 ◽  
Author(s):  
Giulia Zanni ◽  
Elena Di Martino ◽  
Anna Omelyanenko ◽  
Michael Andäng ◽  
Ulla Delle ◽  
...  

Oncotarget ◽  
2017 ◽  
Vol 8 (22) ◽  
pp. 36614-36627 ◽  
Author(s):  
Weirong Kang ◽  
Darren Svirskis ◽  
Vijayalekshmi Sarojini ◽  
Ailsa L. McGregor ◽  
Joseph Bevitt ◽  
...  

2018 ◽  
Author(s):  
Guillaume Vares ◽  
Vincent Jallet ◽  
Yoshitaka Matsumoto ◽  
Cedric Rentier ◽  
Kentaro Takayama ◽  
...  

AbstractTreatment resistance, relapse and metastasis remain critical issues in some challenging cancers, such as chondrosarcomas. Boron-neutron Capture Therapy (BNCT) is a targeted radiation therapy modality that relies on the ability of boron atoms to capture low energy neutrons, yielding high linear energy transfer alpha particles. We have developed an innovative boron-delivery system for BNCT, composed of multifunctional fluorescent mesoporous silica nanoparticles (B-MSNs), grafted with an activatable cell penetrating peptide (ACPP) for improved penetration in tumors and with Gadolinium for magnetic resonance imaging (MRI)in vivo. Chondrosarcoma cells were exposedin vitroto an epithermal neutron beam after B-MSNs administration. BNCT beam exposure successfully induced DNA damage and cell death, including in radio-resistant ALDH+ cancer stem cells (CSCs), suggesting that BNCT using this system might be a suitable treatment modality for chondrosarcoma or other hard-to-treat cancers.


Sign in / Sign up

Export Citation Format

Share Document