scholarly journals Chidamide Combined With Doxorubicin Induced p53-Driven Cell Cycle Arrest and Cell Apoptosis Reverse Multidrug Resistance of Breast Cancer

2021 ◽  
Vol 11 ◽  
Author(s):  
Lixia Cao ◽  
Shaorong Zhao ◽  
Qianxi Yang ◽  
Zhendong Shi ◽  
Jingjing Liu ◽  
...  

The multidrug-resistant (MDR) phenotype is usually accompanied by an abnormal expression of histone deacetylase (HDAC). Given that HDAC is vital in chromatin remodeling and epigenetics, inhibiting the role of HDAC has become an important approach for tumor treatment. However, the effect of HDAC inhibitors on MDR breast cancer has not been elucidated. This study aim to demonstrate the potential of chidamide (CHI) combined with the chemotherapy drug doxorubicin (DOX) to overcome chemotherapeutic resistance of breast cancer in vitro and in vivo, laying the experimental foundation for the next clinical application. The results showed that, CHI combined with DOX showed significant cytotoxicity to MDR breast cancer cells in vitro and in vivo compared with the CHI monotherapy. The cell cycle distribution results showed that CHI caused G0/G1 cell cycle arrest and inhibited cell growth regardless of the addition of DOX. At the same time, annexin V staining and TUNEL staining results showed that CHI enhanced the number of cell apoptosis in drug-resistant cells. The western blot analysis found that p53 was activated in the CHI-treated group and combined treatment group, and then the activated p53 up-regulated p21, apoptosis regulator recombinant protein (Puma), and pro-apoptotic protein Bax, down-regulated the apoptotic proteins Bcl-xL and Bcl-2, and activated the caspase cascade to induce apoptosis.

2020 ◽  
Author(s):  
Lixia CAO ◽  
Shaorong Zhao ◽  
Qianxi Yang ◽  
Zhendong Shi ◽  
Jingjing Liu ◽  
...  

Abstract Background The multidrug-resistant (MDR) phenotype is usually accompanied by an abnormal expression of histone deacetylase (HDAC). Given that HDAC is vital in chromatin remodeling and epigenetics, inhibiting the role of HDAC has become an important approach for tumor treatment. However, the effect of HDAC inhibitors on MDR breast cancer has not been elucidated. This study aimed to evaluate the resistance of two MDR breast cancer cell lines to the HDAC-selective inhibitor chidamide (CHI). Methods Cell viability, cell cycle and apoptosis were detected by CCK8, crystal violet staining, EDU staining, TUNEL assay, flow cytometry. The expression of HDAC1, H3K9, H3K18, p53, p21, caspase3/7/9 and the Bcl family was analyzed by western blotting and Quantitative real-time PCR. MDR breast cancer growth suppression by CHI and/or doxorubicin (DOX) in vivo was investigated in a tumor xenograft mouse model. Results The results showed that, CHI combined with DOX showed significant cytotoxicity to MDR breast cancer cells in vitro and in vivo compared with the CHI monotherapy. The cell cycle distribution results showed that CHI caused G0/G1 cell cycle arrest and inhibited cell growth regardless of the addition of DOX. At the same time, Annexin V staining and TUNEL staining results showed that CHI enhanced the number of cell apoptosis in drug-resistant cells. The western blot analysis found that p53 as a tumor suppressor was in a silent state in drug-resistant cells. However, p53 was activated in the CHI-treated and combined treatment groups, which, in turn, activated the p53 up-regulated apoptosis regulator recombinant protein (Puma) and pro-apoptotic protein Bax, downregulated the apoptotic proteins Bcl-xL and Bcl-2, and activated the caspase cascade to induce apoptosis. Conclusion The irreversible cell stress induced by CHI combined with DOX reduced the expression of HDAC1 and activated caspase-dependent apoptosis and p21-mediated growth arrest pathway, which might have been driven by the activation of p53. This provided a strong theoretical basis for exploring the treatment strategy of the combined use of CHI in patients with breast cancer who did not respond to chemotherapy or had cancer progression.


2020 ◽  
Author(s):  
Lixia CAO ◽  
Shaorong Zhao ◽  
Qianxi Yang ◽  
Zhendong Shi ◽  
Jingjing Liu ◽  
...  

Abstract Background: The multidrug-resistant (MDR) phenotype is usually accompanied by an abnormal expression of histone deacetylase (HDAC). Given that HDAC is vital in chromatin remodeling and epigenetics, inhibiting the role of HDAC has become an important approach for tumor treatment. However, the effect of HDAC inhibitors on MDR breast cancer has not been elucidated. This study aimed to evaluate the resistance of two MDR breast cancer cell lines to the HDAC-selective inhibitor chidamide (CHI).Methods: Cell viability, cell cycle and apoptosis were detected by CCK8, crystal violet staining, EDU staining, TUNEL assay, flow cytometry. The expression of HDAC1, H3K9, H3K18, p53, p21, caspase3/7/9 and the Bcl family was analyzed by western blotting and Quantitative real-time PCR. MDR breast cancer growth suppression by CHI and/or doxorubicin (DOX) in vivo was investigated in a tumor xenograft mouse model.Results: The results showed that, CHI combined with DOX showed significant cytotoxicity to MDR breast cancer cells in vitro and in vivo compared with the CHI monotherapy. The cell cycle distribution results showed that CHI caused G0/G1 cell cycle arrest and inhibited cell growth regardless of the addition of DOX. At the same time, Annexin V staining and TUNEL staining results showed that CHI enhanced the number of cell apoptosis in drug-resistant cells. The western blot analysis found that p53 as a tumor suppressor was in a silent state in drug-resistant cells. However, p53 was activated in the CHI-treated and combined treatment groups, which, in turn, activated the p53 up-regulated apoptosis regulator recombinant protein (Puma) and pro-apoptotic protein Bax, downregulated the apoptotic proteins Bcl-xL and Bcl-2, and activated the caspase cascade to induce apoptosis. Conclusion: The irreversible cell stress induced by CHI combined with DOX reduced the expression of HDAC1 and activated caspase-dependent apoptosis and p21-mediated growth arrest pathway, which might have been driven by the activation of p53. This provided a strong theoretical basis for exploring the treatment strategy of the combined use of CHI in patients with breast cancer who did not respond to chemotherapy or had cancer progression.


Tumor Biology ◽  
2016 ◽  
Vol 37 (8) ◽  
pp. 10793-10804 ◽  
Author(s):  
Chaoqin Duan ◽  
Bin Zhang ◽  
Chao Deng ◽  
Yu Cao ◽  
Fan Zhou ◽  
...  

2020 ◽  
Author(s):  
Wenbao Lu ◽  
Meicen Zhou ◽  
Bing Wang ◽  
Xueting Liu ◽  
Bingwei Li

Abstract Background: Dysregulation of cell cycle progression is one of the common features of human cancer cells, however, its mechanism remains unclear. This study aims to clarify the role and the underlying mechanisms of Roquin1 in cell cycle arrest induction in breast cancer.Methods: Public cancer databases were analyzed to identify the expression pattern of Roquin1 in human breast cancers and the significant association with patient survival. Quantitative real-time PCR and western blots were performed to detect the expression of Roquin1 in breast cancer samples and cell lines. Cell counting, MTT assay, flow cytometry, and in vivo study were conducted to investigate the effects of Roquin1 on cell proliferation, cell cycle progression and tumor progression. RNA-sequencing was applied to identify the differential genes and pathways regulated by Roquin1. RNA immunoprecipitation assay, luciferase reporter assay, mRNA half-life detection, RNA affinity binding assay, and RIP-ChIP were used to explore the molecular mechanisms of Roquin1.Results: We showed that Roquin1 expression in breast cancer tissues and cell lines was inhibited, and the reduction in Roquin1 expression was associated with poor overall survival and relapse free survival of patients with breast cancer. Roquin1 overexpression inhibited breast cancer cell proliferation and induced G1/S cell cycle arrest without causing significant apoptosis. In contrast, knockdown of Roquin1 promoted breast cancer cell growth and cycle progression. Moreover, in vivo induction of Roquin1 by adenovirus significantly suppressed breast tumor growth and metastasis. Mechanistically, Roquin1 selectively destabilizing cell cycle–promoting genes, including Cyclin D1, Cyclin E1, cyclin dependent kinase 6 (CDK6) and minichromosome maintenance 2 (MCM2) through targeting the stem–loop structure in the 3’untranslated region (3’UTR) of mRNAs via its ROQ domain, leading to the downregulation of cell cycle–promoting mRNAs.Conclusions: Our findings demonstrated that Roquin1 was a novel breast tumor suppressor and could induce G1/S cell cycle arrest by selectively downregulating the expression of cell cycle–promoting genes, which might as a potential molecular target for breast cancer treatment.


2020 ◽  
Vol 13 ◽  
pp. 175628481989543
Author(s):  
Amanda Braga Bona ◽  
Danielle Queiroz Calcagno ◽  
Helem Ferreira Ribeiro ◽  
José Augusto Pereira Carneiro Muniz ◽  
Giovanny Rebouças Pinto ◽  
...  

Background: Gastric cancer is one of the most incident types of cancer worldwide and presents high mortality rates and poor prognosis. MYC oncogene overexpression is a key event in gastric carcinogenesis and it is known that its protein positively regulates CDC25B expression which, in turn, plays an essential role in the cell division cycle progression. Menadione is a synthetic form of vitamin K that acts as a specific inhibitor of the CDC25 family of phosphatases. Methods: To better understand the menadione mechanism of action in gastric cancer, we evaluated its molecular and cellular effects in cell lines and in Sapajus apella, nonhuman primates from the new world which had gastric carcinogenesis induced by N-Methyl-N-nitrosourea. We tested CDC25B expression by western blot and RT-qPCR. In-vitro assays include proliferation, migration, invasion and flow cytometry to analyze cell cycle arrest. In in-vivo experiments, in addition to the expression analyses, we followed the preneoplastic lesions and the tumor progression by ultrasonography, endoscopy, biopsies, histopathology and immunohistochemistry. Results: Our tests demonstrated menadione reducing CDC25B expression in vivo and in vitro. It was able to reduce migration, invasion and proliferation rates, and induce cell cycle arrest in gastric cancer cell lines. Moreover, our in-vivo experiments demonstrated menadione inhibiting tumor development and progression. Conclusions: We suggest this compound may be an important ally of chemotherapeutics in the treatment of gastric cancer. In addition, CDC25B has proven to be an effective target for investigation and development of new therapeutic strategies for this malignancy.


2019 ◽  
Vol 53 ◽  
pp. 187-196 ◽  
Author(s):  
Shuhua Shan ◽  
Yue Xie ◽  
Huiling Zhao ◽  
Jinping Niu ◽  
Sheng Zhang ◽  
...  

2019 ◽  
Vol 4 (44) ◽  
pp. 12971-12977
Author(s):  
Nenad Marković ◽  
Milan Zarić ◽  
Marija D. Živković ◽  
Snežana Rajković ◽  
Ivan Jovanović ◽  
...  

2003 ◽  
Vol 23 (24) ◽  
pp. 9375-9388 ◽  
Author(s):  
Melanie J. McConnell ◽  
Nathalie Chevallier ◽  
Windy Berkofsky-Fessler ◽  
Jena M. Giltnane ◽  
Rupal B. Malani ◽  
...  

ABSTRACT The transcriptional repressor PLZF was identified by its translocation with retinoic acid receptor alpha in t(11;17) acute promyelocytic leukemia (APL). Ectopic expression of PLZF leads to cell cycle arrest and growth suppression, while disruption of normal PLZF function is implicated in the development of APL. To clarify the function of PLZF in cell growth and survival, we used an inducible PLZF cell line in a microarray analysis to identify the target genes repressed by PLZF. One prominent gene identified was c-myc. The array analysis demonstrated that repression of c-myc by PLZF led to a reduction in c-myc-activated transcripts and an increase in c-myc-repressed transcripts. Regulation of c-myc by PLZF was shown to be both direct and reversible. An interaction between PLZF and the c-myc promoter could be detected both in vitro and in vivo. PLZF repressed the wild-type c-myc promoter in a reporter assay, dependent on the integrity of the binding site identified in vitro. PLZF binding in vivo was coincident with a decrease in RNA polymerase occupation of the c-myc promoter, indicating that repression occurred via a reduction in the initiation of transcription. Finally, expression of c-myc reversed the cell cycle arrest induced by PLZF. These data suggest that PLZF expression maintains a cell in a quiescent state by repressing c-myc expression and preventing cell cycle progression. Loss of this repression through the translocation that occurs in t(11;17) would have serious consequences for cell growth control.


Sign in / Sign up

Export Citation Format

Share Document