scholarly journals Study of messenger RNA inactivation and protein degradation in an Escherichia coli cell-free expression system

2010 ◽  
Vol 4 (1) ◽  
pp. 9 ◽  
Author(s):  
Jonghyeon Shin ◽  
Vincent Noireaux
Author(s):  
Zachary Z. Sun ◽  
Clarmyra A. Hayes ◽  
Jonghyeon Shin ◽  
Filippo Caschera ◽  
Richard M. Murray ◽  
...  

2020 ◽  
Author(s):  
Emanuel Worst ◽  
oemer Kurt ◽  
Marc Finkler ◽  
Marc Schenkelberger ◽  
Vincent Noireaux ◽  
...  

<p>Pyelonephritis-associated pili (pap) enable migration of the uropathogenic Escherichia coli strain (UPEC) through the urinary tract. UPEC can switch between a stable 'ON phase' where the corresponding pap genes are expressed and a stable 'OFF phase' where their transcription is repressed. Hereditary, alternate DNA methylation of only two GATC motives within the regulatory region stabilizes the respective phase over many generations. The underlying molecular mechanism is only partly understood. Previous investigations suggest that in vivo phase-variation stability results from cooperative action of the transcriptional regulators Lrp and PapI. Here, we use an E. coli cell-free expression system to study the function of pap regulatory region based on a specially designed, synthetic construct flanked by two reporter genes encoding fluorescent proteins for simple readout. Based on our observations we suggest that Lrp and the conformation of the self-complementary regulatory DNA play a strong role in the regulation of phase-variation. Our work not only contributes to better understand the phase variation mechanism, but it represents a successful start for engineering stable, hereditary and strong expression control based on methylation.</p>


2015 ◽  
Author(s):  
Zachary Sun ◽  
Jongmin Kim ◽  
Vipul Singhal ◽  
Richard M Murray

An in vitro S30-based Escherichia coli expression system (“Transcription-Translation”, or “TX-TL”) has been developed as an alternative prototyping environment to the cell for synthetic circuits [1-5]. Basic circuit elements, such as switches and cascades, have been shown to function in TX-TL, as well as bacteriophage assembly [2, 6]. Circuits can also be prototyped from basic parts within 8 hours, avoiding cloning and transformation steps [7]. However, most published results have been obtained in a “batch mode” reaction, where factors that play an important role for in vivo circuit dynamics – namely protein degradation and protein dilution – are severely hindered or are not present. This limits the complexity of circuits built in TX-TL without steady-state or continuous-flow solutions [8-10]. However, alternate methods that enable dilution either require extra equipment and expertise or demand lower reaction throughput. We explored the possibility of supplementing TX-TL with ClpXP, an AAA+ protease pair that selectively degrades tagged proteins [11], to provide finely-tuned degradation. The mechanism of ClpXP degradation has been extensively studied both in vitro and in vivo [12-15]. However, it has not been characterized for use in synthetic circuits – metrics such as toxicity, ATP usage, degradation variation over time, and cellular loading need to be determined. In particular, TX-TL in batch mode is known to be resource limited [16], and ClpXP is known to require significant amounts of ATP to unfold different protein targets [17, 18]. We find that ClpXP’s protein degradation dynamics is dependent on protein identity, but can be determined experimentally. Degradation follows Michaels-Menten kinetics, and can be fine tuned by ClpX or ClpP concentration. Added purified ClpX is also not toxic to TX-TL reactions. Therefore, ClpXP provides a controllable way to introduce protein degradation and dynamics into synthetic circuits in TX-TL.


Sign in / Sign up

Export Citation Format

Share Document