scholarly journals Development of a proof of concept immunochromatographic lateral flow assay for point of care diagnosis of Mycobacterium tuberculosis

2013 ◽  
Vol 6 (1) ◽  
Author(s):  
Liya Wassie ◽  
Markos Abebe ◽  
Abraham Aseffa ◽  
Kidist Bobosha ◽  
Martha Zewdie ◽  
...  
Author(s):  
Carla Eiras

Interleukin-6 (IL-6) is a multifunctional cytokine and high bloodstream levels of which have been associated with severe inflammatory diseases, such as dengue fever, sepsis, various cancers, and visceral leishmaniasis (VL). Rapid tests for the quantification of IL-6 would be of great assistance for the bedside diagnosis and treatment of diseases such as VL. We have developed a lateral flow assay (LFA) for rapid and colorimetric IL-6 detection, consisting of anti-IL-6 antibodies conjugated to gold nanoparticles (AuNPs). The optimal concentration of anti-IL-6 used in the conjugate was determined to be 800.0 μg/mL, based on an aggregation assay using LFA. A linear relationship between IL-6 standard concentration and color intensity was observed after 20 min, with a linear range between 1.25 ng/mL and 9,000 ng/mL. The limit of detection for this method was estimated a t0.38 ng/mL. The concentration of IL-6 in five patients with severe VL was measured using LFA, and the results were consistent with those obtained using the cytometric bead array (CBA) method. A thorough analysis of the LFA membranes’ surface morphology, before and after sample contact, was performed using atomic force microscopy (AFM).The prototype described here is still being tested and improved, but this LFA will undoubtedly be of great help in the clinical quantification of IL-6.


Author(s):  
Carla Eiras

Interleukin-6 (IL-6) is a multifunctional cytokine and high bloodstream levels of which have been associated with severe inflammatory diseases, such as dengue fever, sepsis, various cancers, and visceral leishmaniasis (VL). Rapid tests for the quantification of IL-6 would be of great assistance for the bedside diagnosis and treatment of diseases such as VL. We have developed a lateral flow assay (LFA) for rapid and colorimetric IL-6 detection, consisting of anti-IL-6 antibodies conjugated to gold nanoparticles (AuNPs). The optimal concentration of anti-IL-6 used in the conjugate was determined to be 800.0 μg/mL, based on an aggregation assay using LFA. A linear relationship between IL-6 standard concentration and color intensity was observed after 20 min, with a linear range between 1.25 ng/mL and 9,000 ng/mL. The limit of detection for this method was estimated at a t0.38 ng/mL. The concentration of IL-6 in five patients with severe VL was measured using LFA, and the results were consistent with those obtained using the cytometric bead array (CBA) method. A thorough analysis of the LFA membranes’ surface morphology, before and after sample contact, was performed using atomic force microscopy (AFM). The prototype described here is still being tested and improved, but this LFA will undoubtedly be of great help in the clinical quantification of IL-6.


2016 ◽  
Vol 6 (1) ◽  
pp. 1600920 ◽  
Author(s):  
Jane Ru Choi ◽  
Kar Wey Yong ◽  
Ruihua Tang ◽  
Yan Gong ◽  
Ting Wen ◽  
...  

Author(s):  
Paul Deutschmann ◽  
Jutta Pikalo ◽  
Martin Beer ◽  
Sandra Blome

African swine fever (ASF) is one of the most important viral diseases of domestic pigs and wild boar. Apart from endemic cycles in Africa, ASF is now continuously spreading in Europe and Asia. As ASF leads to severe but unspecific clinical signs and high lethality, early pathogen detection is of utmost importance. Recently, “point-of-care” (POC) tests have been intensively discussed for the use in remote areas but also in the context of on-farm epidemiological investigations and wild boar carcass screening. Along these lines, the INGEZIM ASFV CROM Ag lateral flow assay (Eurofins Technologies Ingenasa) promises virus antigen detection under field conditions within minutes. In the present study, we evaluated the performance of the assay with selected high-quality reference blood samples, and also with real field samples from wild boar carcasses in different stages of decay from the ongoing ASF outbreak in Germany. While we observed a sensitivity of roughly 77% in freeze-thawed matrices of close to ideal quality, our approach to simulate field conditions in direct carcass testing without any modification resulted in a drastically reduced sensitivity of only 12.5%. Freeze thawing increased the sensitivity to roughly 44% which mirrored the overall sensitivity of 49% in the total data set of carcass samples. A diagnostic specificity of 100% was observed. However, most of the German ASF cases in wild boar would have been missed using the lateral flow assay (LFA) alone. Therefore, the antigen-specific LFA should not be regarded as a substitute for any OIE listed diagnostic method and has very limited use for carcass testing at the point of care. For optimized LFA antigen tests, the sensitivity with field samples must be significantly increased. An improved sensitivity is seen with freeze-thawed samples, which may indicate problems in the accessibility of ASFV antigen.


2020 ◽  
Author(s):  
Jeong-Ran Kim ◽  
Hae Yeong Kang ◽  
Su-Bin Seong ◽  
Nari Kim ◽  
Tae Sun Shim ◽  
...  

Abstract Background: Interferon-gamma (IFN-γ) release assays (IGRAs) are useful for the diagnosis of Mycobacterium tuberculosis infection. Current IGRAs use either enzyme-linked immunosorbent assay (ELISA) or enzyme-linked immunospot assay, which require complex procedures and techniques to determine IFN-γ secretion. We aimed to compare the usefulness of the easy-to-use lateral flow assay (LFA) with that of the QuantiFERON-TB Gold In-Tube (QFT-GIT) or QuantiFERON-TB Gold Plus (QFT-plus) ELISAs for detecting IFN-γ, produced by the blood T cells stimulated by tuberculosis (TB) antigen. Methods: Following informed consent, 176 participants, including health care workers such as TB laboratory workers and radiologists, were enrolled for the study from June 2017 to June 2018. Blood samples were collected and tested using QFT-GIT and QFT-plus. The secreted IFN-γ was quantified by LFA, which took approximately 15 min, and ELISA, which took approximately 3 h. Results: A total of 176 blood samples were screened. The positive rates of QFT-GIT and QFT-plus were 34.1% and 37.5%, respectively. Overall agreement between QFT-GIT and QFT-plus was 93.1% ( κ = 0.86). The positive rates of LFA with QFT-GIT tube and QFT-plus tube were 25.6% and 31.3%, respectively, overall agreement of LFA being 90.3% ( κ = 0.78) and 89.2% ( κ = 0.77), respectively, compared to the QFT-GIT and QFT-plus ELISA. Conclusion: The ability of LFA to measure IFN-γ was similar to that of ELISA. The current findings suggested that the new LFA could be more conveniently utilized for diagnosing TB infection.


2018 ◽  
Vol 90 (15) ◽  
pp. 9132-9137 ◽  
Author(s):  
Jinqi Deng ◽  
Mingzhu Yang ◽  
Jing Wu ◽  
Wei Zhang ◽  
Xingyu Jiang

Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6609
Author(s):  
Simone Cavalera ◽  
Fabio Di Nardo ◽  
Luca Forte ◽  
Francesca Marinoni ◽  
Matteo Chiarello ◽  
...  

Multiplex lateral flow immunoassay (LFIA) is largely used for point-of-care testing to detect different pathogens or biomarkers in a single device. The increasing demand for multitargeting diagnostics requires multi-informative single tests. In this study, we demonstrated three strategies to upgrade standard multiplex LFIA to multimodal capacity. As a proof-of-concept, we applied the strategies to the differential diagnosis of Human Immunodeficiency Virus (HIV) infection, a widespread pathogen, for which conventional multiplex LFIA testing is well-established. In the new two-parameter LFIA (x2LFIA), we exploited color encoding, in which the binding of multiple targets occurs in one reactive band and the color of the probe reveals which one is present in the sample. By combining the sequential alignment of several reactive zones along the membrane of the LFIA strip and gold nanoparticles and gold nanostars for the differential visualization, in this demonstration, the x2LFIA can furnish information on HIV serotype and stage of infection in a single device. Three immunosensors were designed. The use of bioreagents as the capturing ligand anchored onto the membrane or as the detection ligand labelled with gold nanomaterials affected the performance of the x2LFIA. Higher detectability was achieved by the format involving the HIV-specific antigens as capturing agent and labelled secondary bioligands (anti-human immunoglobulins M and protein G) as the probes.


2018 ◽  
Vol 941 ◽  
pp. 2522-2527
Author(s):  
Sylvio Schneider ◽  
Martina Selig ◽  
Verena Keil ◽  
Matthias Lehmann ◽  
Andreas H. Foitzik ◽  
...  

Smartphones are developing into all-purposes devices. In the present work, the employment/application of smartphones as medical devices in home care and point-of-care (POC) diagnostics are investigated in the analysis of Lateral Flow Assays (LFA). A smartphone-based LFA reader was developed for the quantitative analysis of D-Dimer – a biomarker indicating e.g. thrombotic event or danger of embolism.The proof-of-concept has been shown with multiple smartphones in establishing: (I) Optimal dimensions of the LFA cell of 72.11mm distance of smartphone to D-Dimer test leading to a coefficients of variances (CV) between 0.8% and 4.2%. (II) Inter-device investigations: CVs around 13.5%; a limit of detection (LOD) of 100ng/ml (DDU) D-Dimer. (III) Inter-smartphone investigations: CV about 16%, a limit of detection (LOD) at 66.4ng/ml (DDU). (IV) Calibrations: CV and LOD of three smartphones are comparable to the commercial available LFA reader. Further development to put the multiple smartphone-based LFA reader on the market.


Sign in / Sign up

Export Citation Format

Share Document