scholarly journals Dynamic regulation of RNA editing of ion channels and receptors in the mammalian nervous system

2009 ◽  
Vol 2 (1) ◽  
pp. 13 ◽  
Author(s):  
Bao Tan ◽  
Hua Huang ◽  
Runyi Lam ◽  
Tuck Soong
Author(s):  
Stefan Gründer

Acid-sensing ion channels (ASICs) are proton-gated Na+ channels. Being almost ubiquitously present in neurons of the vertebrate nervous system, their precise function remained obscure for a long time. Various animal toxins that bind to ASICs with high affinity and specificity have been tremendously helpful in uncovering the role of ASICs. We now know that they contribute to synaptic transmission at excitatory synapses as well as to sensing metabolic acidosis and nociception. Moreover, detailed characterization of mouse models uncovered an unanticipated role of ASICs in disorders of the nervous system like stroke, multiple sclerosis, and pathological pain. This review provides an overview on the expression, structure, and pharmacology of ASICs plus a summary of what is known and what is still unknown about their physiological functions and their roles in diseases.


2018 ◽  
Vol 38 (12) ◽  
pp. 3081-3091 ◽  
Author(s):  
Jan Kubanek ◽  
Poojan Shukla ◽  
Alakananda Das ◽  
Stephen A. Baccus ◽  
Miriam B. Goodman

2020 ◽  
Vol 318 (3) ◽  
pp. F531-F543 ◽  
Author(s):  
Marcelo D. Carattino ◽  
Nicolas Montalbetti

Acid-sensing ion channels (ASICs) are cation-permeable channels that in the periphery are primarily expressed in sensory neurons that innervate tissues and organs. Soon after the cloning of the ASIC subunits, almost 20 yr ago, investigators began to use genetically modified mice to assess the role of these channels in physiological processes. These studies provide critical insights about the participation of ASICs in sensory processes, including mechanotransduction, chemoreception, and nociception. Here, we provide an extensive assessment of these findings and discuss the current gaps in knowledge with regard to the functions of ASICs in the peripheral nervous system.


Author(s):  
Machiel J. Zwarts

Essential to all living creatures is the ability to convey information. In addition motor responses are required, for example running. This all is possible due to the ability of specialized cells to conduct information along the cell membrane by means of action potentials (AP) made possible by the charged cell membrane, which has selective permeability for different ions. Voltage and ligand sensitive ion channels are responsible for sudden changes in selective permeability of the membrane resulting in local depolarization of the membrane. The neuromuscular junction is a highly specialized region of the distal motor axon that is responsible for the transferring of activation from nerve to muscle. All these systems and subsystems can fail and a thorough understanding is necessary in order to understand the changes a clinical neurophysiologist can encounter while recording from the human nervous system in cases of disorders of brain, nerve and muscle.


2020 ◽  
Vol 23 (8) ◽  
pp. 1034-1034
Author(s):  
Paul R. Marshall ◽  
Qiongyi Zhao ◽  
Xiang Li ◽  
Wei Wei ◽  
Ambika Periyakaruppiah ◽  
...  

Genes ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 1026
Author(s):  
Cornelia Vesely ◽  
Michael F. Jantsch

RNA-editing by adenosine deaminases acting on RNA (ADARs) converts adenosines to inosines in structured RNAs. Inosines are read as guanosines by most cellular machineries. A to I editing has two major functions: first, marking endogenous RNAs as “self”, therefore helping the innate immune system to distinguish repeat- and endogenous retrovirus-derived RNAs from invading pathogenic RNAs; and second, recoding the information of the coding RNAs, leading to the translation of proteins that differ from their genomically encoded versions. It is obvious that these two important biological functions of ADARs will differ during development, in different tissues, upon altered physiological conditions or after exposure to pathogens. Indeed, different levels of ADAR-mediated editing have been observed in different tissues, as a response to altered physiology or upon pathogen exposure. In this review, we describe the dynamics of A to I editing and summarize the known and likely mechanisms that will lead to global but also substrate-specific regulation of A to I editing.


Parasitology ◽  
1996 ◽  
Vol 113 (S1) ◽  
pp. S73-S82 ◽  
Author(s):  
K. L. Blair ◽  
P. A. V. Anderson

SUMMARYOur understanding of the neurobiology of the Platyhelminthes has come in large part from free-living turbellarians. In addition to providing considerable information about the capabilities of the rudimentary nervous system present in all members of the phylum, turbellarians have provided the most definitive information about the variety of ion channels present in the membranes of neurones and muscle cells, and about the physiology and pharmacology of those channels. Furthermore, preparations of single, viable muscle cells have provided some of the most conclusive evidence about the variety of transmitters present, and the types of response they evoke. Here, we review what is known about the physiology and pharmacology of the turbellarian neuromuscular system. Particular attention is given to the triclad flatworm Bdelloura Candida, the best studied species in this respect, but other species are included where relevant.


Sign in / Sign up

Export Citation Format

Share Document