scholarly journals Association testing of copy number variants in schizophrenia and autism spectrum disorders

Author(s):  
Bernard J Crespi ◽  
Helen J Crofts
2019 ◽  
Vol 10 (1) ◽  
Author(s):  
L. D’Abate ◽  
S. Walker ◽  
R. K. C. Yuen ◽  
K. Tammimies ◽  
J. A. Buchanan ◽  
...  

AbstractIdentification of genetic biomarkers associated with autism spectrum disorders (ASDs) could improve recurrence prediction for families with a child with ASD. Here, we describe clinical microarray findings for 253 longitudinally phenotyped ASD families from the Baby Siblings Research Consortium (BSRC), encompassing 288 infant siblings. By age 3, 103 siblings (35.8%) were diagnosed with ASD and 54 (18.8%) were developing atypically. Thirteen siblings have copy number variants (CNVs) involving ASD-relevant genes: 6 with ASD, 5 atypically developing, and 2 typically developing. Within these families, an ASD-related CNV in a sibling has a positive predictive value (PPV) for ASD or atypical development of 0.83; the Simons Simplex Collection of ASD families shows similar PPVs. Polygenic risk analyses suggest that common genetic variants may also contribute to ASD. CNV findings would have been pre-symptomatically predictive of ASD or atypical development in 11 (7%) of the 157 BSRC siblings who were eventually diagnosed clinically.


2013 ◽  
Vol 22 (1) ◽  
pp. 71-78 ◽  
Author(s):  
Caroline Nava ◽  
Boris Keren ◽  
Cyril Mignot ◽  
Agnès Rastetter ◽  
Sandra Chantot-Bastaraud ◽  
...  

Author(s):  
Stefano Vicari ◽  
Eleonora Napoli ◽  
Viviana Cordeddu ◽  
Deny Menghini ◽  
Viola Alesi ◽  
...  

2018 ◽  
Vol 61 (4) ◽  
pp. 230-234 ◽  
Author(s):  
Felicity V. Larson ◽  
John R. Arrand ◽  
Digby Tantam ◽  
Peter B. Jones ◽  
Anthony J. Holland

2018 ◽  
pp. 84-95
Author(s):  
Elliott Rees ◽  
George Kirov

Copy number variants (CNVs) are deletions, duplications, inversions, or translocations of large DNA segments. They can play a significant role in human disease. Thirteen CNVs have received strong statistical support for involvement in schizophrenia. They are all rare in cases (<1%), much rarer among controls, and have high odds ratios (ORs) for causing disease. The same CNVs also increase risk for autism spectrum disorders, developmental delay, and medical/physical comorbidities. The penetrance of these CNVs for any disorder is relatively high, ranging from 10% for 15q11.2 deletions to nearly 100% for deletions at 22q11.2. Strong selection pressure operates against carriers of these CNVs. Most of these are formed by non-allelic homologous recombination (NAHR), which leads to high mutation rates, thus maintaining the rates of these CNVs in the general population, despite the strong selection forces.


2016 ◽  
Vol 89 (6) ◽  
pp. 708-718 ◽  
Author(s):  
V. Oikonomakis ◽  
K. Kosma ◽  
A. Mitrakos ◽  
C. Sofocleous ◽  
P. Pervanidou ◽  
...  

2019 ◽  
Vol 50 (06) ◽  
pp. 367-377
Author(s):  
S. Monteiro ◽  
J. Pinto ◽  
A. Mira Coelho ◽  
M. Leão ◽  
S. Dória

Background Autism spectrum disorders (ASD) affect many children with an estimated prevalence of 1%. Array-comparative genomic hybridization (CGH) offers significant sensitivity for the identification of submicroscopic chromosomal abnormalities and it is one of the most used techniques in daily practice. The main objective of this study was to describe the usefulness of array-CGH in the etiologic diagnosis of ASD. Methods Two-hundred fifty-three patients admitted to a neurogenetic outpatient clinic and diagnosed with ASD were selected for array-CGH (4 × 180K microarrays). Public databases were used for classification in accordance with the American College of Medical Genetics Standards and Guidelines. Results About 3.56% (9/253) of copy number variations (CNVs) were classified as pathogenic. When likely pathogenic CNVs were considered, the rate increased to 11.46% (29/253). Some CNVs apparently not correlated to the ASD were also found. Considering a phenotype–genotype correlation, the patients were divided in two groups. One group according to previous literature includes all the CNVs related to ASDs (23 CNVs present in 22 children) and another with those apparently not related to ASD (10 CNVs present in 7 children). In 18 patients, a next-generation sequencing (NGS) panel were performed. From these, one pathogenic and 16 uncertain significance variants were identified. Conclusion The results of our study are in accordance with the literature, highlighting the relevance of array-CGH in the genetic of diagnosis of ASD population, namely when associated with other features. Our study also reinforces the need for complementarity between array-CGH and NGS panels or whole exome sequencing in the etiological diagnosis of ASD.


Sign in / Sign up

Export Citation Format

Share Document