scholarly journals Molecular mechanisms of resistance to HER2-targeted therapy

2009 ◽  
Vol 11 (S1) ◽  
Author(s):  
FJ Esteva
Haematologica ◽  
2019 ◽  
Vol 105 (5) ◽  
pp. 1317-1328 ◽  
Author(s):  
Valentina Agnusdei ◽  
Sonia Minuzzo ◽  
Marica Pinazza ◽  
Alessandra Gasparini ◽  
Laura Pezzè ◽  
...  

Author(s):  
Arianna Filippelli ◽  
Valerio Ciccone ◽  
Sandra Donnini ◽  
Lucia Morbidelli

2019 ◽  
Vol 2019 (1) ◽  
pp. 169-180
Author(s):  
Joseph L Graves ◽  
Akamu J Ewunkem ◽  
Jason Ward ◽  
Constance Staley ◽  
Misty D Thomas ◽  
...  

Abstract Background and Objectives Metallic antimicrobial materials are of growing interest due to their potential to control pathogenic and multidrug-resistant bacteria. Yet we do not know if utilizing these materials can lead to genetic adaptations that produce even more dangerous bacterial varieties. Methodology Here we utilize experimental evolution to produce strains of Escherichia coli K-12 MG1655 resistant to, the iron analog, gallium nitrate (Ga(NO3)3). Whole genome sequencing was utilized to determine genomic changes associated with gallium resistance. Computational modeling was utilized to propose potential molecular mechanisms of resistance. Results By day 10 of evolution, increased gallium resistance was evident in populations cultured in medium containing a sublethal concentration of gallium. Furthermore, these populations showed increased resistance to ionic silver and iron (III), but not iron (II) and no increase in traditional antibiotic resistance compared with controls and the ancestral strain. In contrast, the control populations showed increased resistance to rifampicin relative to the gallium-resistant and ancestral population. Genomic analysis identified hard selective sweeps of mutations in several genes in the gallium (III)-resistant lines including: fecA (iron citrate outer membrane transporter), insl1 (IS30 tranposase) one intergenic mutations arsC →/→ yhiS; (arsenate reductase/pseudogene) and in one pseudogene yedN ←; (iapH/yopM family). Two additional significant intergenic polymorphisms were found at frequencies > 0.500 in fepD ←/→ entS (iron-enterobactin transporter subunit/enterobactin exporter, iron-regulated) and yfgF ←/→ yfgG (cyclic-di-GMP phosphodiesterase, anaerobic/uncharacterized protein). The control populations displayed mutations in the rpoB gene, a gene associated with rifampicin resistance. Conclusions This study corroborates recent results observed in experiments utilizing pathogenic Pseudomonas strains that also showed that Gram-negative bacteria can rapidly evolve resistance to an atom that mimics an essential micronutrient and shows the pleiotropic consequences associated with this adaptation. Lay summary We utilize experimental evolution to produce strains of Escherichia coli K-12 MG1655 resistant to, the iron analog, gallium nitrate (Ga(NO3)3). Whole genome sequencing was utilized to determine genomic changes associated with gallium resistance. Computational modeling was utilized to propose potential molecular mechanisms of resistance.


2007 ◽  
Vol 42 (10) ◽  
pp. 1365-1378 ◽  
Author(s):  
José S. RodrÍguez-Zavala ◽  
Jorge D. GarcÍa-GarcÍa ◽  
Marco A. Ortiz-Cruz ◽  
Rafael Moreno-Sánchez

Author(s):  
Joana G. Rodrigues ◽  
Henrique O. Duarte ◽  
Celso A. Reis ◽  
Joana Gomes

Aberrant cell surface glycosylation signatures are currently known to actively drive the neoplastic transformation of healthy cells. By disrupting the homeostatic functions of their protein carriers, cancer-associated glycans mechanistically underpin several molecular hallmarks of human malignancy. Furthermore, such aberrant glycan structures play key roles in the acquisition of molecular resistance to targeted therapeutic agents, which compromises their clinical efficacy, by modulating tumour cell aggressiveness and supporting the establishment of an immunosuppressive microenvironment. Recent advances in the study of the tumour cell glycoproteome have unravelled previously elusive molecular mechanisms of therapeutic resistance, guided the rational design of novel personalized therapeutic strategies, and may further improve the clinical performance of currently approved anti-cancer targeted agents. In this review, we highlight the impact of glycosylation in cancer targeted therapy, with particular focus on receptor tyrosine kinase-targeted therapy, immune checkpoints blockade therapy, and current developments on therapeutic strategies directed to glycan-binding proteins and other innovative glycan therapeutic strategies.


Sign in / Sign up

Export Citation Format

Share Document