External frame versus internal locking plate for articular pilon fracture fixation

2018 ◽  
Author(s):  
Matthew Northgraves ◽  
Hemant Sharma
2021 ◽  
Vol 2 (3) ◽  
pp. 150-163
Author(s):  
Lydia Flett ◽  
Joy Adamson ◽  
Elizabeth Barron ◽  
Stephen Brealey ◽  
Belen Corbacho ◽  
...  

Aims A pilon fracture is a severe ankle joint injury caused by high-energy trauma, typically affecting men of working age. Although relatively uncommon (5% to 7% of all tibial fractures), this injury causes among the worst functional and health outcomes of any skeletal injury, with a high risk of serious complications and long-term disability, and with devastating consequences on patients’ quality of life and financial prospects. Robust evidence to guide treatment is currently lacking. This study aims to evaluate the clinical and cost-effectiveness of two surgical interventions that are most commonly used to treat pilon fractures. Methods A randomized controlled trial (RCT) of 334 adult patients diagnosed with a closed type C pilon fracture will be conducted. Internal locking plate fixation will be compared with external frame fixation. The primary outcome and endpoint will be the Disability Rating Index (a patient self-reported assessment of physical disability) at 12 months. This will also be measured at baseline, three, six, and 24 months after randomization. Secondary outcomes include the Olerud and Molander Ankle Score (OMAS), the five-level EuroQol five-dimenison score (EQ-5D-5L), complications (including bone healing), resource use, work impact, and patient treatment preference. The acceptability of the treatments and study design to patients and health care professionals will be explored through qualitative methods. Discussion The two treatments being compared are the most commonly used for this injury, however there is uncertainty over which is most clinically and cost-effective. The Articular Pilon Fracture (ACTIVE) Trial is a sufficiently powered and rigorously designed study to inform clinical decisions for the treatment of adults with this injury. Cite this article: Bone Jt Open 2021;2(3):150–163.


Author(s):  
Paul Borbas ◽  
Rafael Loucas ◽  
Marios Loucas ◽  
Maximilian Vetter ◽  
Simon Hofstede ◽  
...  

Abstract Introduction Coronal plane fractures of the distal humerus are relatively rare and can be challenging to treat due to their complexity and intra-articular nature. There is no gold standard for surgical management of these complex fractures. The purpose of this study was to compare the biomechanical stability and strength of two different internal fixation techniques for complex coronal plane fractures of the capitellum with posterior comminution. Materials and methods Fourteen fresh frozen, age- and gender-matched cadaveric elbows were 3D-navigated osteotomized simulating a Dubberley type IIB fracture. Specimens were randomized into one of two treatment groups and stabilized with an anterior antiglide plate with additional anteroposterior cannulated headless compression screws (group antiGP + HCS) or a posterolateral distal humerus locking plate with lateral extension (group PLP). Cyclic testing was performed with 75 N over 2000 cycles and ultimately until construct failure. Data were analyzed for displacement, construct stiffness, and ultimate load to failure. Results There was no significant difference in displacement during 2000 cycles (p = 0.291), stiffness (310 vs. 347 N/mm; p = 0.612) or ultimate load to failure (649 ± 351 vs. 887 ± 187 N; p = 0.140) between the two groups. Conclusions Posterolateral distal humerus locking plate achieves equal biomechanical fixation strength as an anterior antiglide plate with additional anteroposterior cannulated headless compression screws for fracture fixation of complex coronal plane fractures of the capitellum. These results support the use of a posterolateral distal humerus locking plate considering the clinical advantages of less invasive surgery and extraarticular metalware. Level of evidence Biomechanical study.


2021 ◽  
Author(s):  
Yash Paul Chaudhry ◽  
Efstratios Papadelis ◽  
Hunter Hayes ◽  
Philip F. Stahel ◽  
Erik A. Hasenboehler

Abstract Background: Comminuted intra-articular tibial pilon fractures can be challenging to manage, with high revision rates and poor functional outcomes. This study reviewed (1) treatment, complications, and clinical outcomes in studies of complex comminuted tibial pilon fractures (type AO43-C3); and (2) primary ankle arthrodesis as a management option for these types of complex injuries.Methods: A systematic literature search was performed on PubMed from 1990-2020 to determine complications and outcomes after staged fracture fixation and primary ankle joint arthrodesis for comminuted C3-type tibial pilon fractures.The search was conducted in compliance with the PRISMA guidelines, using the following MeSH terms: “tibial pilon”/“pilon fracture”/“plafond fracture”/“distal tibial”/“43-C3”/“ankle fracture”/“ankle fusion”/“primary ankle arthrodesis”/“pilon fracture staged”/“pilon external fixation” and “pilon open reduction internal fixation.” Inclusion criteria were restricted to original articles in English language on adult patients ≥18 years of age. Eligibility criteria for retrieved publications were determined using a “PICO” approach (population, intervention/exposure, comparison, outcomes). Weighted analysis was used to compare treatment groups on time to definitive treatment, follow-up time, range of motion, fracture classification, and complications.Results: The systematic literature review using the defined MeSH terms yielded 72 original articles. Of these, 13 articles met the eligibility criteria based on the PICO statements, of which 8 publications investigated the outcomes of a staged fixation approach in 308 cumulative patients, and 5 articles focused on primary ankle arthrodesis in 69 cumulative patients. For staged treatment, the mean wound complication rate was 14.6%, and the malunion/nonunion rate was 9.9%. For primary arthrodesis, the mean wound complication rate was 2.9%, and the malunion/nonunion rate was 2.9%. After risk stratification for fracture type and severity, the small cumulative cohort of patients included in the primary arthrodesis publications did not provide sufficient power to determine a clinically relevant difference in complications and long-term patient outcomes compared to the staged surgical fixation group.Conclusions: At present, there is insufficient evidence in the published literature to provide guidance towards consideration of ankle arthrodesis for complex comminuted C3-type tibial pilon fractures, compared to the standard treatment by staged surgical fracture fixation.


2018 ◽  
Vol 7 (1) ◽  
pp. 111-120 ◽  
Author(s):  
A. MacLeod ◽  
A. H. R. W. Simpson ◽  
P. Pankaj

ObjectivesSecondary fracture healing is strongly influenced by the stiffness of the bone-fixator system. Biomechanical tests are extensively used to investigate stiffness and strength of fixation devices. The stiffness values reported in the literature for locked plating, however, vary by three orders of magnitude. The aim of this study was to examine the influence that the method of restraint and load application has on the stiffness produced, the strain distribution within the bone, and the stresses in the implant for locking plate constructs.MethodsSynthetic composite bones were used to evaluate experimentally the influence of four different methods of loading and restraining specimens, all used in recent previous studies. Two plate types and three screw arrangements were also evaluated for each loading scenario. Computational models were also developed and validated using the experimental tests.ResultsThe method of loading was found to affect the gap stiffness strongly (by up to six times) but also the magnitude of the plate stress and the location and magnitude of strains at the bone-screw interface.ConclusionsThis study demonstrates that the method of loading is responsible for much of the difference in reported stiffness values in the literature. It also shows that previous contradictory findings, such as the influence of working length and very large differences in failure loads, can be readily explained by the choice of loading condition. Cite this article: A. MacLeod, A. H. R. W. Simpson, P. Pankaj. Experimental and numerical investigation into the influence of loading conditions in biomechanical testing of locking plate fracture fixation devices. Bone Joint Res 2018;7:111–120. DOI: 10.1302/2046-3758.71.BJR-2017-0074.R2.


Sign in / Sign up

Export Citation Format

Share Document