scholarly journals Rab31-dependent regulation of transforming growth factor ß expression in breast cancer cells

2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Susanne Soelch ◽  
Nathalie Beaufort ◽  
Daniela Loessner ◽  
Matthias Kotzsch ◽  
Ute Reuning ◽  
...  

Abstract Background The small GTP-binding protein Rab31 plays an important role in the modulation of tumor biological-relevant processes, including cell proliferation, adhesion, and invasion. As an underlying mechanism, Rab31 is presumed to act as a molecular switch between a more proliferative and an invasive phenotype. This prompted us to analyze whether Rab31 overexpression in breast cancer cells affects expression of genes involved in epithelial-to-mesenchymal transition (EMT)-like processes when compared to Rab31 low-expressing cells. Methods Commercially available profiler PCR arrays were applied to search for differentially expressed genes in Rab31 high- and low-expressing CAMA-1 breast cancer cells. Differential expression of selected candidate genes in response to Rab31 overexpression in CAMA-1 cells was validated by independent qPCR and protein assays. Results Gene expression profiling of key genes involved in EMT, or its reciprocal process MET, identified 9 genes being significantly up- or down-regulated in Rab31 overexpressing CAMA-1 cells, with the strongest effects seen for TGFB1, encoding TGF-ß1 (> 25-fold down-regulation in Rab31 overexpressing cells). Subsequent validation analyses by qPCR revealed a strong down-regulation of TGFB1 mRNA levels in response to increased Rab31 expression not only in CAMA-1 cells, but also in another breast cancer cell line, MDA-MB-231. Using ELISA and Western blot analysis, a considerable reduction of both intracellular and secreted TGF-ß1 antigen levels was determined in Rab31 overexpressing cells compared to vector control cells. Furthermore, reduced TGF-ß activity was observed upon Rab31 overexpression in CAMA-1 cells using a sensitive TGF-ß bioassay. Finally, the relationship between Rab31 expression and the TGF-ß axis was analyzed by another profiler PCR array focusing on genes involved in TGF-ß signaling. We found 12 out of 84 mRNAs significantly reduced and 7 mRNAs significantly increased upon Rab31 overexpression. Conclusions Our results demonstrate that Rab31 is a potent modulator of the expression of TGF-ß and other components of the TGF-ß signaling pathway in breast cancer cells.

2020 ◽  
Vol 19 ◽  
pp. 153303382097967
Author(s):  
Jin Zhang ◽  
Nan Shao ◽  
Xiaoyu Yang ◽  
Chuanbo Xie ◽  
Yawei Shi ◽  
...  

The microRNA-200 (miR-200) family has been reported to be vital for the inhibition of epithelial-to-mesenchymal transition (EMT) in tumor cells. The miR-200 family represents a complex multi-factorial regulatory network which has not been well described in breast cancer. This study aimed to clarify the underlying regulatory association between IL-8 and miR-200 family in the process of EMT in breast cancer cell. In estrogen-receptor (ER) positive breast cancer cell line MCF-7, IL-8 overexpression cells were performed by lentivirus transfection as endogenous regulation with additional exogenous IL-8 stimulation. Transient overexpressions of miR-200 family were performed after endogenous or exogenous IL-8 overexpression in MCF-7 cells. IL-8 knockdown cells were constructed via siRNA and shRNA transfection in triple negative breast cancer cell line MDA-MB-231. N-cadherin, vimentin and ZEB2 were down-regulated and E-cadherin was up-regulated in IL-8 knockdown group compared with control group. On the other hand, N-cadherin, vimentin and ZEB2 were up-regulated and E-cadherin was down-regulated in IL-8 overexpression group compared with control group. This indicated IL-8 promotes EMT in breast cancer cells. Transwell assay showed that IL-8 increased the migration and invasiveness of tumor cells. Furthermore, we performed transient overexpression of miR-200 family after endogenous or exogenous IL-8 overexpression in MCF-7 cells, which showed that the miR-200 family could inhibit EMT induced by IL-8. IL-8 promoted EMT via downregulation of miR-200 family expression in breast cancer cells and increases tumor cell migration and invasion.


2019 ◽  
Vol 97 (2) ◽  
pp. 193-200 ◽  
Author(s):  
Yang Zhang ◽  
Jianyi Li ◽  
Shi Jia ◽  
Yitong Wang ◽  
Ye Kang ◽  
...  

Long noncoding RNA activated by transforming growth factor-beta (lnc-ATB) is abnormally expressed in a number of tumor types. The aim of this study was to investigate the expression of lnc-ATB and miR-141-3p, and to determine whether lnc-ATB can regulate epithelial–mesenchymal transition (EMT) by miR-141-3p in breast cancer. Here, we found that lnc-ATB was highly expressed, whereas there was low expression of miR-141-3p in breast cancer tissues and cells. Knockdown of lnc-ATB in two breast cancer cell lines (MDA-MB-231 and BT549) significantly increased miR-141-3p expression. Down-regulation of lnc-ATB resulted in a morphological change of breast cancer cells from spindle-like to a round shape, and in a remarkable inhibition of cell migration and invasion, which were reversed by miR-141-3p inhibitor. Furthermore, we demonstrated that lnc-ATB knockdown decreased ZEB1, ZEB2, N-cadherin, and vimentin expression, and promoted E-cadherin expression, while miR-141-3p inhibitor could reverse those effects. Moreover, we proved that miR-141-3p directly bound to the 3′ untranslated region (UTR) of ZEB1 and ZEB2 and negatively regulated ZEB1 and ZEB2 expression. Taken together, our results show that knockdown of lnc-ATB significantly inhibits the EMT process of breast cancer cells by increasing the expression of miR-141-3p, indicating that lnc-ATB might serve as a novel therapeutic target for breast cancer.


2011 ◽  
Vol 102 (6) ◽  
pp. 1151-1157 ◽  
Author(s):  
Xiaoyan Li ◽  
Xiaoli Kong ◽  
Qiang Huo ◽  
Haiyang Guo ◽  
Shi Yan ◽  
...  

Neoplasma ◽  
2016 ◽  
Vol 63 (06) ◽  
pp. 901-910 ◽  
Author(s):  
B. SMOLKOVA ◽  
S. MIKLIKOVA ◽  
V. HORVATHOVA KAJABOVA ◽  
A. BABELOVA ◽  
N. EL YAMANI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document