scholarly journals Rollover Prevention and Motion Planning for an Intelligent Heavy Truck

2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Zhilin Jin ◽  
Jingxuan Li ◽  
Hong Wang ◽  
Jun Li ◽  
Chaosheng Huang

AbstractIt is very necessary for an intelligent heavy truck to have the ability to prevent rollover independently. However, it was rarely considered in intelligent vehicle motion planning. To improve rollover stability, a motion planning strategy with autonomous anti rollover ability for an intelligent heavy truck is put forward in this paper. Considering the influence of unsprung mass in the front axle and the rear axle and the body roll stiffness on vehicle rollover stability, a rollover dynamics model is built for the intelligent heavy truck. From the model, a novel rollover index is derived to evaluate vehicle rollover risk accurately, and a model predictive control algorithm is applicated to design the motion planning strategy for the intelligent heavy truck, which integrates the vehicle rollover stability, the artificial potential field for the obstacle avoidance, the path tracking and vehicle dynamics constrains. Then, the optimal path is obtained to meet the requirements that the intelligent heavy truck can avoid obstacles and drive stably without rollover. In addition, three typical scenarios are designed to numerically simulate the dynamic performance of the intelligent heavy truck. The results show that the proposed motion planning strategy can avoid collisions and improve vehicle rollover stability effectively even under the worst driving scenarios.

2020 ◽  
Author(s):  
Zhilin Jin ◽  
Jingxuan Li ◽  
Hong Wang ◽  
Jun Li ◽  
Chaosheng Huang

Abstract Anti-rollover is an important performance for automated heavy trucks, which has been seldomly considered in the motion planning. This paper proposes an anti-rollover motion planning based on model predictive control (MPC) for automated heavy trucks. Taking the coupling of roll motion of sprung mass of the front axle with that of the drive axle into consideration, a seven degrees of freedom rollover dynamics model is established, and an evaluation index that can accurately describe the rollover motion is derived for heavy trucks. Then, a model predictive control strategy is designed for motion planning that combines the rollover dynamics, the artificial potential field for obstacle avoidance, and the trajectory tracking. In addition, the optimal path is calculated that considers collision avoidance, anti-rollover and vehicle dynamic constraints. Furthermore, three typical scenarios are applied to validate the performance of the proposed motion planning algorithm. The obtained results demonstrate that the proposed anti-rollover motion planning can effectively avoid collisions and reduce the rollover risk simultaneously when confronting edge scenarios.


2012 ◽  
Vol 490-495 ◽  
pp. 1451-1455
Author(s):  
Guang Yao Zhao ◽  
Yi Feng Zhao ◽  
Chuan Yin Tang ◽  
Zhi Yuan Du

Aimed at SUV-type vehicle, simulation and analysis of pressure resistance experiments on the body of automobile has been presented in the paper, according to the vehicle safety regulations and standards of FMVSS216. A limited SUV vehicle model is created; simulation is obtained with the help of software LS-DYNA, based on the principle of finite element analysis method. Assessment of pressure resistance and safety of the automobile has been presented, from the aspect of the deformation of body, the energy absorption of the vehicle and components, and the pressure on the body, etc. By rational improving of the original design of body structure, the reasonable distribution of pressure absorbability of the body of the SUV-type automobile is achieved. The effect of the overall energy absorption of the body is fully exerted, and then the safety of the driver and the passenger in a rollover accident is improved. Research methods and conclusions of this paper provide useful ways and references to the research of the safety of vehicle rollover and design of rationality of body energy absorption


Author(s):  
Pavlina Mihaylova ◽  
Alessandro Pratellesi ◽  
Niccolò Baldanzini ◽  
Marco Pierini

Concept FE models of the vehicle structure are often used to optimize it in terms of static and dynamic stiffness, as they are parametric and computationally inexpensive. On the other hand they introduce modeling errors with respect to their detailed FE equivalents due to the simplifications made. Even worse, the link between the concept and the detailed FE model can be sometimes lost after optimization. The aim of this paper is to present and validate an alternative optimization approach that uses the detailed FE model of the vehicle body-in-white instead of its concept representation. Structural modifications of this model were applied in two different ways — by local joint modifications and by using mesh morphing techniques. The first choice was motivated by the strong influence of the structural joints on the global vehicle performance. For this type of modification the plate thicknesses of the most influent car body joints were changed. In the second case the overall car dimensions were modified. The drawback of using detailed FE models of the vehicle body is that they can be times bigger than their concept counterparts and can thus require considerably more time for structural analysis. To make the approach proposed in this work a feasible alternative for optimization in the concept phase response surface models were introduced. With them the global static and dynamic performance of the body-in-white was represented by means of approximating polynomials. Optimization on such mathematical models is fast, so the choice of the optimization algorithm is not limited only among local-search strategies. In the current study Genetic Algorithm was used to increase the chances for finding better design alternatives. Two different optimization problems were defined and solved. Their final solutions were presented and compared in terms of structural modifications and resulting responses. The approach in this paper can be successfully used in the concept phase as it is fast and reliable and at the same time it avoids the problems typical for concept models.


Robotica ◽  
1995 ◽  
Vol 13 (2) ◽  
pp. 149-158 ◽  
Author(s):  
Nak Young Chong ◽  
Donghoon Choi ◽  
Il Hong Suh

SummaryAn algorithm for the motion planning of the multifingered hand is proposed to generate finite displacements and changes in orientation of objects by considering sliding contacts as well as rolling contacts between the fingertip and the object at the contact point. Specifically, a nonlinear optimization problem is firstly formulated and solved to find the minimum joint velocity and the minimum contact force to impart a desired motion to the object at each time step. Then, the relative velocity at the contact point is found by calculating the velocity of the fingertip and the object at the contact point. Finally, time derivatives of the surface variables and the contact angle of the fingertip and the object at the current time step is computed using the Montana's contact equation to find the contact parameters of the fingertip and the object at the next time step. To show the validity of the proposed algorithm, a numerical example is illustrated by employing the robotic hand manipulating a sphere with three fingers each of which has four joints


Electronics ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 201 ◽  
Author(s):  
Hadi Jahanshahi ◽  
Mohsen Jafarzadeh ◽  
Naeimeh Najafizadeh Sari ◽  
Viet-Thanh Pham ◽  
Van Van Huynh ◽  
...  

This paper discusses the real-time optimal path planning of autonomous humanoid robots in unknown environments regarding the absence and presence of the danger space. The danger is defined as an environment which is not an obstacle nor free space and robot are permitted to cross when no free space options are available. In other words, the danger can be defined as the potentially risky areas of the map. For example, mud pits in a wooded area and greasy floor in a factory can be considered as a danger. The synthetic potential field, linguistic method, and Markov decision processes are methods which have been reviewed for path planning in a free-danger unknown environment. The modified Markov decision processes based on the Takagi–Sugeno fuzzy inference system is implemented to reach the target in the presence and absence of the danger space. In the proposed method, the reward function has been calculated without the exact estimation of the distance and shape of the obstacles. Unlike other existing path planning algorithms, the proposed methods can work with noisy data. Additionally, the entire motion planning procedure is fully autonomous. This feature makes the robot able to work in a real situation. The discussed methods ensure the collision avoidance and convergence to the target in an optimal and safe path. An Aldebaran humanoid robot, NAO H25, has been selected to verify the presented methods. The proposed methods require only vision data which can be obtained by only one camera. The experimental results demonstrate the efficiency of the proposed methods.


2020 ◽  
Vol 15 (3) ◽  
pp. 351-364
Author(s):  
Jimu Liu ◽  
Yuan Tian ◽  
Feng Gao

Abstract The manufacture and maintenance of large parts in ships, trains, aircrafts, and so on create an increasing demand for mobile machine tools to perform in-situ operations. However, few mobile robots can accommodate the complex environment of industrial plants while performing machining tasks. This study proposes a novel six-legged walking machine tool consisting of a legged mobile robot and a portable parallel kinematic machine tool. The kinematic model of the entire system is presented, and the workspace of different components, including a leg, the body, and the head, is analyzed. A hierarchical motion planning scheme is proposed to take advantage of the large workspace of the legged mobile platform and the high precision of the parallel machine tool. The repeatability of the head motion, body motion, and walking distance is evaluated through experiments, which is 0.11, 1.0, and 3.4 mm, respectively. Finally, an application scenario is shown in which the walking machine tool steps successfully over a 250 mm-high obstacle and drills a hole in an aluminum plate. The experiments prove the rationality of the hierarchical motion planning scheme and demonstrate the extensive potential of the walking machine tool for in-situ operations on large parts.


2015 ◽  
Vol 776 ◽  
pp. 396-402 ◽  
Author(s):  
Nukman Habib ◽  
Adi Soeprijanto ◽  
Djoko Purwanto ◽  
Mauridhi Hery Purnomo

The ability of mobile robot to move about the environment from initial position to the goal position, without colliding the obstacles is needed. This paper presents about motion planning of mobile robot (MR) in obstacles-filled workspace using the modified Ant Colony Optimization (M-ACO) algorithm combined with the point to point (PTP) motion in achieving the static goal. Initially, MR try to plan the path to reach a goal, but since there are obstacles on the path will be passed through so nodes must be placed around the obstacles. Then MR do PTP motion through this nodes chosen by M-ACO, in order to form optimal path from the choice nodes until the last node that is free from obstacles. The proposed approach shows that MR can not only avoid collision with obstacle but also make a global planning path. The simulation result have shown that the proposed algorithm is suitable for MR motion planning in the complex environments with less running time.


Sign in / Sign up

Export Citation Format

Share Document