scholarly journals Fatigue Life Prediction of Rolling Bearings Based on Modified SWT Mean Stress Correction

2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Aodi Yu ◽  
Hong-Zhong Huang ◽  
Yan-Feng Li ◽  
He Li ◽  
Ying Zeng

AbstractThe existing engineering empirical life analysis models are not capable of considering the constitutive behavior of materials under contact loads; as a consequence, these methods may not be accurate to predict fatigue lives of rolling bearings. In addition, the contact stress of bearing in operation is cyclically pulsating, it also means that the bearing undergo non-symmetrical fatigue loadings. Since the mean stress has great effects on fatigue life, in this work, a novel fatigue life prediction model based on the modified SWT mean stress correction is proposed as a basis of which to estimate the fatigue life of rolling bearings, in which, takes sensitivity of materials and mean stress into account. A compensation factor is introduced to overcome the inaccurate predictions resulted from the Smith, Watson, and Topper (SWT) model that considers the mean stress effect and sensitivity while assuming the sensitivity coefficient of all materials to be 0.5. Moreover, the validation of the model is finalized by several practical experimental data and the comparison to the conventional SWT model. The results show the better performance of the proposed model, especially in the accuracy than the existing SWT model. This research will shed light on a new direction for predicting the fatigue life of rolling bearings.

2020 ◽  
Author(s):  
Aodi Yu ◽  
Hong-Zhong Huang ◽  
Yan-Feng Li ◽  
He Li ◽  
Ying Zeng

Abstract Mean stress has a great influence on fatigue life, commonly used stress-based life prediction models can only fit the test results of fatigue life under specific stress ratio or mean stress but cannot describe the effect of stress ratio or mean stress on fatigue life. Smith, Watson and Topper (SWT) proposed a simple mean stress correction criterion. However, the SWT model regards the sensitivity coefficient of all materials to mean stress as 0.5, which will lead to inaccurate predictions for materials with a sensitivity coefficient not equal to 0.5. In this paper, considering the sensitivity of different materials to mean stresses, compensation factor is introduced to modify the SWT model, and several sets of experimental data are used for model verification. Then, the proposed model is applied to fatigue life predictions of rolling bearings, and the results of proposed method are compared with test results to verify its accuracy.


1970 ◽  
Vol 5 (3) ◽  
pp. 207-211 ◽  
Author(s):  
T H Erismann

The present work is a shorter version of a more detailed treatise by the author (1)∗. The method consists of two parts: the empirical determination of certain characteristics of a material by means of a relatively small number of well defined standard tests, and the arithmetical application of the results obtained to arbitrary loading histories. The following groups of parameters are thus taken into account: the variations of the mean stress; the interaction of these variations and the superposed oscillating stresses; the spectrum of the oscillating-stress amplitudes; the sequence of the oscillating-stress amplitudes.


2008 ◽  
Vol 22 (31n32) ◽  
pp. 5503-5508 ◽  
Author(s):  
SUNG HYUK PARK ◽  
SEONG-GU HONG ◽  
BYOUNG HO LEE ◽  
CHONG SOO LEE

Fatigue behavior of rolled AZ31 magnesium alloy, which shows an anisotropic deformation behavior due to the direction dependent formation of deformation twins, was investigated by carrying out stress and strain controlled fatigue tests. The anisotropy in deformation behavior introduced asymmetric stress-strain hysteresis hoops, which make it difficult to use common fatigue life prediction models, such as stress and strain-based models, and induced mean stress and/or strain even under fully-reversed conditions; the tensile mean stress and strain were found to have a harmful effect on the fatigue resistance. An energy-based model was used to describe the fatigue life behavior as strain energy density was stabilized at the early stage of fatigue life and nearly invariant through entire life. To account for the mean stress and strain effects, an elastic energy related to the mean stress and a plastic strain energy consumed by the mean strain were appropriately considered in the model. The results showed that there is good agreement between the prediction and the experimental data.


2016 ◽  
Vol 26 (8) ◽  
pp. 1219-1241 ◽  
Author(s):  
Shun-Peng Zhu ◽  
Qiang Lei ◽  
Hong-Zhong Huang ◽  
Yuan-Jian Yang ◽  
Weiwen Peng

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Shan Lu ◽  
Yunlai Su ◽  
Mao Yang ◽  
Yan Li

Mean stress effect plays an important role in fatigue life prediction, and it is discovered that maximum stress has nonnegligible influence on mean stress effect. Therefore, a modified Walker model is proposed to account for mean stress effect on fatigue life of aeroengine disks, which contains the influence of stress ratio and maximum stress on mean stress effect. Eight sets of fatigue data for standard smooth bars from six kinds of materials commonly used in aeroengine disks as well as two sets of experimental data from simulated specimens of turbine disks were employed to investigate the prediction capability of the proposed model against other candidate mean stress relationships. It is found that Goodman model generates most conservative results, while Morrow model overestimates fatigue life for most cases. SWT model yields similar results to Walker model but with less accuracy. The results of the modified Walker model turn out to be superior to those of any other candidate models for all cases examined, especially for large mean stress ones. Thus, the modified Walker model can be an effective method to predict fatigue lives of aeroengine disks influenced by mean stresses.


Author(s):  
Yanbin Luo ◽  
Yanrong Wang ◽  
Bo Zhong ◽  
Jiazhe Zhao ◽  
Xiaojie Zhang

The effects of stress gradient and size effect on fatigue life are investigated based on the distributions of stress at notch root of the notched specimens of GH4169 alloy. The relationship between the life of the notched specimens and the smooth specimens is correlated by introducing the stress gradient effect factor, and a new life model of predicting the notched specimens based on the Walker modification for the mean stress effect is established. In order to improve the prediction precision of life model with the equation parameters having a definite physical significance, the relationships among fatigue parameters, monotonic ultimate tensile strength and reduction of area are established. Three-dimensional elastic finite element (FE) analysis of a vortex reducer is carried out to obtain the data of stress and strain for predicting its life. The results show that there is a high-stress gradient at the edge of the air holes of the vortex reducer, and it is thus a dangerous point for fatigue crack initiation. The prediction result of the vortex reducer is more reasonable if the mean stress, stress gradient and size effect are considered comprehensively. The developed life model can reflect the effects of many factors well, especially the stress concentration. The life of the notched specimens predicted by this model give a high estimation precision, and the prediction life data mainly fall into the scatter band of factor 2.


Sign in / Sign up

Export Citation Format

Share Document