scholarly journals Shear strength properties of hybrid (hinoki cypress and Japanese cedar) cross-laminated timber

2021 ◽  
Vol 67 (1) ◽  
Author(s):  
Seiichiro Ukyo ◽  
Atsushi Miyatake ◽  
Kenta Shindo ◽  
Yasushi Hiramatsu

AbstractIn this study, the out-of-plane shear strength of hybrid cross-laminated timber (CLT) with outer layers of hinoki (hinoki cypress, Chamaecyparis obtusa) and inner layers of sugi (Japanese cedar, Cryptomeria japonica) is investigated for four different layer configurations. To investigate the influence from rolling shear properties of cross layers on the shear strength of CLT, stress analysis was conducted using the shear analogy method. The nominal shear strength, the maximum shear force divided by the cross-section of CLT, was in the 1.0–2.1 MPa range. Using the shear analogy method, the rolling shear modulus in the cross layer was determined as 72.9 MPa, which was comparable with the value obtained for laminae in previous study as well as the value confirmed by strain measurements in the present study. The magnitude of rolling shear stress in the cross layer was 0.9–1.1 times the average shear stress, which was negatively correlated with the nominal shear strength. From the regression line between the nominal shear strength and the magnitude of the shear stress in the cross layer, the mean shear strength of the cross layer was estimated to be 1.33 MPa.

BioResources ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. 7071-7085
Author(s):  
Daiyuan Zhang ◽  
Liming Shen ◽  
Xudong Zhu ◽  
Sujun Zhang ◽  
Meng Gong

Cross-laminated timber is a wood product with excellent fire resistance and mechanical performance that is often used in tiny houses. Using the ASTM standard E564, the shear performance of cross-laminated timber wall panels, with and without openings, were investigated in this study. The specimens were made of spruce-pine-fir IIc lumber and installed on a test platform using high-strength bolts passing through them. This connection mode limited the displacements obtained in the test, primarily the shear displacements and rocking displacements. By comparing the static load test data of the three specimens with openings and the one without an opening, it was found that openings reduced the shear strength and shear stiffness. For the same sized rectangular opening, the shear stiffness of the cross-laminated timber panel was less when the wider side was horizontal (normal to the direction of the applied force). The shear stiffness of the cross-laminated timber wall panels can be effectively improved by reinforcing the areas near the openings with metal sheets. With reinforcement, the shear strength did not change drastically, but the damage to the cross-laminated timber wall panels was significantly reduced.


2019 ◽  
Vol 222 ◽  
pp. 579-587 ◽  
Author(s):  
Yawei Cao ◽  
Jason Street ◽  
Minghao Li ◽  
Hyungsuk Lim

2020 ◽  
Vol 259 ◽  
pp. 119710
Author(s):  
Charles Gardner ◽  
William G. Davids ◽  
Roberto Lopez-Anido ◽  
Benjamin Herzog ◽  
Russell Edgar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document