scholarly journals Learning curves for drug response prediction in cancer cell lines

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Alexander Partin ◽  
Thomas Brettin ◽  
Yvonne A. Evrard ◽  
Yitan Zhu ◽  
Hyunseung Yoo ◽  
...  

Abstract Background Motivated by the size and availability of cell line drug sensitivity data, researchers have been developing machine learning (ML) models for predicting drug response to advance cancer treatment. As drug sensitivity studies continue generating drug response data, a common question is whether the generalization performance of existing prediction models can be further improved with more training data. Methods We utilize empirical learning curves for evaluating and comparing the data scaling properties of two neural networks (NNs) and two gradient boosting decision tree (GBDT) models trained on four cell line drug screening datasets. The learning curves are accurately fitted to a power law model, providing a framework for assessing the data scaling behavior of these models. Results The curves demonstrate that no single model dominates in terms of prediction performance across all datasets and training sizes, thus suggesting that the actual shape of these curves depends on the unique pair of an ML model and a dataset. The multi-input NN (mNN), in which gene expressions of cancer cells and molecular drug descriptors are input into separate subnetworks, outperforms a single-input NN (sNN), where the cell and drug features are concatenated for the input layer. In contrast, a GBDT with hyperparameter tuning exhibits superior performance as compared with both NNs at the lower range of training set sizes for two of the tested datasets, whereas the mNN consistently performs better at the higher range of training sizes. Moreover, the trajectory of the curves suggests that increasing the sample size is expected to further improve prediction scores of both NNs. These observations demonstrate the benefit of using learning curves to evaluate prediction models, providing a broader perspective on the overall data scaling characteristics. Conclusions A fitted power law learning curve provides a forward-looking metric for analyzing prediction performance and can serve as a co-design tool to guide experimental biologists and computational scientists in the design of future experiments in prospective research studies.

2013 ◽  
Vol 31 (15_suppl) ◽  
pp. e14544-e14544
Author(s):  
Eva Budinska ◽  
Jenny Wilding ◽  
Vlad Calin Popovici ◽  
Edoardo Missiaglia ◽  
Arnaud Roth ◽  
...  

e14544 Background: We identified CRC gene expression subtypes (ASCO 2012, #3511), which associate with established parameters of outcome as well as relevant biological motifs. We now substantiate their biological and potentially clinical significance by linking them with cell line data and drug sensitivity, primarily attempting to identify models for the poor prognosis subtypes Mesenchymal and CIMP-H like (characterized by EMT/stroma and immune-associated gene modules, respectively). Methods: We analyzed gene expression profiles of 35 publicly available cell lines with sensitivity data for 82 drug compounds, and our 94 cell lines with data on sensitivity for 7 compounds and colony morphology. As in vitro, stromal and immune-associated genes loose their relevance, we trained a new classifier based on genes expressed in both systems, which identifies the subtypes in both tissue and cell cultures. Cell line subtypes were validated by comparing their enrichment for molecular markers with that of our CRC subtypes. Drug sensitivity was assessed by linking original subtypes with 92 drug response signatures (MsigDB) via gene set enrichment analysis, and by screening drug sensitivity of cell line panels against our subtypes (Kruskal-Wallis test). Results: Of the cell lines 70% could be assigned to a subtype with a probability as high as 0.95. The cell line subtypes were significantly associated with their KRAS, BRAF and MSI status and corresponded to our CRC subtypes. Interestingly, the cell lines which in matrigel created a network of undifferentiated cells were assigned to the Mesenchymal subtype. Drug response studies revealed potential sensitivity of subtypes to multiple compounds, in addition to what could be predicted based on their mutational profile (e.g. sensitivity of the CIMP-H subtype to Dasatinib, p<0.01). Conclusions: Our data support the biological and potentially clinical significance of the CRC subtypes in their association with cell line models, including results of drug sensitivity analysis. Our subtypes might not only have prognostic value but might also be predictive for response to drugs. Subtyping cell lines further substantiates their significance as relevant model for functional studies.


2021 ◽  
Author(s):  
Sara Pidò ◽  
Carolina Testa ◽  
Pietro Pinoli

AbstractLarge annotated cell line collections have been proven to enable the prediction of drug response in the preclinical setting. We present an enhancement of Non-Negative Matrix Tri-Factorization method, which allows the integration of different data types for the prediction of missing associations. To test our method we retrieved a dataset from CCLE, containing the connections among cell lines and drugs by means of their IC50 values. We performed two different kind of experiments: a) prediction of missing values in the matrix, b) prediction of the complete drug profile of a new cell line, demonstrating the validity of the method in both scenarios.


Author(s):  
Akram Emdadi ◽  
Changiz Eslahchi

Predicting tumor drug response using cancer cell line drug response values for a large number of anti-cancer drugs is a significant challenge in personalized medicine. Predicting patient response to drugs from data obtained from preclinical models is made easier by the availability of different knowledge on cell lines and drugs. This paper proposes the TCLMF method, a predictive model for predicting drug response in tumor samples that was trained on preclinical samples and is based on the logistic matrix factorization approach. The TCLMF model is designed based on gene expression profiles, tissue type information, the chemical structure of drugs and drug sensitivity (IC 50) data from cancer cell lines. We use preclinical data from the Genomics of Drug Sensitivity in Cancer dataset (GDSC) to train the proposed drug response model, which we then use to predict drug sensitivity of samples from the Cancer Genome Atlas (TCGA) dataset. The TCLMF approach focuses on identifying successful features of cell lines and drugs in order to calculate the probability of the tumor samples being sensitive to drugs. The closest cell line neighbours for each tumor sample are calculated using a description of similarity between tumor samples and cell lines in this study. The drug response for a new tumor is then calculated by averaging the low-rank features obtained from its neighboring cell lines. We compare the results of the TCLMF model with the results of the previously proposed methods using two databases and two approaches to test the model’s performance. In the first approach, 12 drugs with enough known clinical drug response, considered in previous methods, are studied. For 7 drugs out of 12, the TCLMF can significantly distinguish between patients that are resistance to these drugs and the patients that are sensitive to them. These approaches are converted to classification models using a threshold in the second approach, and the results are compared. The results demonstrate that the TCLMF method provides accurate predictions across the results of the other algorithms. Finally, we accurately classify tumor tissue type using the latent vectors obtained from TCLMF’s logistic matrix factorization process. These findings demonstrate that the TCLMF approach produces effective latent vectors for tumor samples. The source code of the TCLMF method is available in https://github.com/emdadi/TCLMF.


2020 ◽  
Author(s):  
Marc Hafner ◽  
Arkadiusz Gladki ◽  
Jane Li ◽  
Eva Lin ◽  
Aaron Lun ◽  
...  

BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Shujun Huang ◽  
Pingzhao Hu ◽  
Ted M. Lakowski

Abstract Background Predicting patient drug response based on a patient’s molecular profile is one of the key goals of precision medicine in breast cancer (BC). Multiple drug response prediction models have been developed to address this problem. However, most of them were developed to make sensitivity predictions for multiple single drugs within cell lines from various cancer types instead of a single cancer type, do not take into account drug properties, and have not been validated in cancer patient-derived data. Among the multi-omics data, gene expression profiles have been shown to be the most informative data for drug response prediction. However, these models were often developed with individual genes. Therefore, this study aimed to develop a drug response prediction model for BC using multiple data types from both cell lines and drugs. Methods We first collected the baseline gene expression profiles of 49 BC cell lines along with IC50 values for 220 drugs tested in these cell lines from Genomics of Drug Sensitivity in Cancer (GDSC). Using these data, we developed a multiple-layer cell line-drug response network (ML-CDN2) by integrating a one-layer cell line similarity network based on the pathway activity profiles and a three-layer drug similarity network based on the drug structures, targets, and pan-cancer IC50 profiles. We further used ML-CDN2 to predict the drug response for new BC cell lines or patient-derived samples. Results ML-CDN2 demonstrated a good predictive performance, with the Pearson correlation coefficient between the observed and predicted IC50 values for all GDSC cell line-drug pairs of 0.873. Also, ML-CDN2 showed a good performance when used to predict drug response in new BC cell lines from the Cancer Cell Line Encyclopedia (CCLE), with a Pearson correlation coefficient of 0.718. Moreover, we found that the cell line-derived ML-CDN2 model could be applied to predict drug response in the BC patient-derived samples from The Cancer Genome Atlas (TCGA). Conclusions The ML-CDN2 model was built to predict BC drug response using comprehensive information from both cell lines and drugs. Compared with existing methods, it has the potential to predict the drug response for BC patient-derived samples.


2018 ◽  
Author(s):  
Uri Ben-David ◽  
Ben Siranosian ◽  
Gavin Ha ◽  
Helen Tang ◽  
Nicholas J. Lyons ◽  
...  
Keyword(s):  

2020 ◽  
Author(s):  
Evanthia Koukouli ◽  
Dennis Wang ◽  
Frank Dondelinger ◽  
Juhyun Park

AbstractCancer treatments can be highly toxic and frequently only a subset of the patient population will benefit from a given treatment. Tumour genetic makeup plays an important role in cancer drug sensitivity. We suspect that gene expression markers could be used as a decision aid for treatment selection or dosage tuning. Using in vitro cancer cell line dose-response and gene expression data from the Genomics of Drug Sensitivity in Cancer (GDSC) project, we build a dose-varying regression model. Unlike existing approaches, this allows us to estimate dosage-dependent associations with gene expression. We include the transcriptomic profiles as dose-invariant covariates into the regression model and assume that their effect varies smoothly over the dosage levels. A two-stage variable selection algorithm (variable screening followed by penalised regression) is used to identify genetic factors that are associated with drug response over the varying dosages. We evaluate the effectiveness of our method using simulation studies focusing on the choice of tuning parameters and cross-validation for predictive accuracy assessment. We further apply the model to data from five BRAF targeted compounds applied to different cancer cell lines under different dosage levels. We highlight the dosage-dependent dynamics of the associations between the selected genes and drug response, and we perform pathway enrichment analysis to show that the selected genes play an important role in pathways related to tumourgenesis and DNA damage response.Author SummaryTumour cell lines allow scientists to test anticancer drugs in a laboratory environment. Cells are exposed to the drug in increasing concentrations, and the drug response, or amount of surviving cells, is measured. Generally, drug response is summarized via a single number such as the concentration at which 50% of the cells have died (IC50). To avoid relying on such summary measures, we adopted a functional regression approach that takes the dose-response curves as inputs, and uses them to find biomarkers of drug response. One major advantage of our approach is that it describes how the effect of a biomarker on the drug response changes with the drug dosage. This is useful for determining optimal treatment dosages and predicting drug response curves for unseen drug-cell line combinations. Our method scales to large numbers of biomarkers by using regularisation and, in contrast with existing literature, selects the most informative genes by accounting for drug response at untested dosages. We demonstrate its value using data from the Genomics of Drug Sensitivity in Cancer project to identify genes whose expression is associated with drug response. We show that the selected genes recapitulate prior biological knowledge, and belong to known cancer pathways.


Sign in / Sign up

Export Citation Format

Share Document