scholarly journals Whole-genome assembly of Babesia ovata and comparative genomics between closely related pathogens

BMC Genomics ◽  
2017 ◽  
Vol 18 (1) ◽  
Author(s):  
Junya Yamagishi ◽  
Masahito Asada ◽  
Hassan Hakimi ◽  
Takeshi Q. Tanaka ◽  
Chihiro Sugimoto ◽  
...  
2021 ◽  
Author(s):  
Matthew Haas ◽  
Thomas Kono ◽  
Marissa Macchietto ◽  
Reneth Millas ◽  
Lillian McGilp ◽  
...  

ABSTRACTNorthern Wild Rice (NWR; Zizania palustris L.) is an aquatic grass native to North America that is notable for its nutritious grain. This is an important species with ecological, cultural, and agricultural significance, specifically in the Great Lakes region of the United States. Using long- and short-range sequencing, Hi-C scaffolding, and RNA-seq data from eight tissues, we generated an annotated whole genome de novo assembly of NWR. The assembly is 1.29 Gb, highly repetitive (∼76.0%), and contains 46,421 putative protein-coding genes. The expansion of retrotransposons within the genome and a whole genome duplication prior to the Zizania-Oryza speciation event have both led to an increase in genome size of NWR in comparison with O. sativa and Z. latifolia. Both events depict a genome rapidly undergoing change over a short evolutionary time. Comparative analyses revealed conservation of large syntenic blocks with Oryza sativa L., which were used to identify putative seed shattering genes. Estimates of divergence times revealed the Zizania genus diverged from Oryza ∼26-30 million years ago (MYA), while NWR and Zizania latifolia diverged from one another ∼6-8 MYA. Comparative genomics confirmed evidence of a whole genome duplication in the Zizania genus and provided support that the event was prior to the NWR-Z. latifolia speciation event. This high-quality genome assembly and annotation provides a valuable resource for comparative genomics in the Oryzeae tribe and provides an important resource for future conservation and breeding efforts of NWR.


Author(s):  
Kirti M. Nitnaware ◽  
Kiran B. Raskar ◽  
Gaurav Agarwal ◽  
Ricardo A. Chávez Montes ◽  
Ratan Chopra ◽  
...  

Author(s):  
Seyoung Mun ◽  
Songmi Kim ◽  
Wooseok Lee ◽  
Keunsoo Kang ◽  
Thomas J. Meyer ◽  
...  

AbstractAdvances in next-generation sequencing (NGS) technology have made personal genome sequencing possible, and indeed, many individual human genomes have now been sequenced. Comparisons of these individual genomes have revealed substantial genomic differences between human populations as well as between individuals from closely related ethnic groups. Transposable elements (TEs) are known to be one of the major sources of these variations and act through various mechanisms, including de novo insertion, insertion-mediated deletion, and TE–TE recombination-mediated deletion. In this study, we carried out de novo whole-genome sequencing of one Korean individual (KPGP9) via multiple insert-size libraries. The de novo whole-genome assembly resulted in 31,305 scaffolds with a scaffold N50 size of 13.23 Mb. Furthermore, through computational data analysis and experimental verification, we revealed that 182 TE-associated structural variation (TASV) insertions and 89 TASV deletions contributed 64,232 bp in sequence gain and 82,772 bp in sequence loss, respectively, in the KPGP9 genome relative to the hg19 reference genome. We also verified structural differences associated with TASVs by comparative analysis with TASVs in recent genomes (AK1 and TCGA genomes) and reported their details. Here, we constructed a new Korean de novo whole-genome assembly and provide the first study, to our knowledge, focused on the identification of TASVs in an individual Korean genome. Our findings again highlight the role of TEs as a major driver of structural variations in human individual genomes.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Amit Rai ◽  
Hideki Hirakawa ◽  
Ryo Nakabayashi ◽  
Shinji Kikuchi ◽  
Koki Hayashi ◽  
...  

AbstractPlant genomes remain highly fragmented and are often characterized by hundreds to thousands of assembly gaps. Here, we report chromosome-level reference and phased genome assembly of Ophiorrhiza pumila, a camptothecin-producing medicinal plant, through an ordered multi-scaffolding and experimental validation approach. With 21 assembly gaps and a contig N50 of 18.49 Mb, Ophiorrhiza genome is one of the most complete plant genomes assembled to date. We also report 273 nitrogen-containing metabolites, including diverse monoterpene indole alkaloids (MIAs). A comparative genomics approach identifies strictosidine biogenesis as the origin of MIA evolution. The emergence of strictosidine biosynthesis-catalyzing enzymes precede downstream enzymes’ evolution post γ whole-genome triplication, which occurred approximately 110 Mya in O. pumila, and before the whole-genome duplication in Camptotheca acuminata identified here. Combining comparative genome analysis, multi-omics analysis, and metabolic gene-cluster analysis, we propose a working model for MIA evolution, and a pangenome for MIA biosynthesis, which will help in establishing a sustainable supply of camptothecin.


DNA Research ◽  
2019 ◽  
Vol 26 (3) ◽  
pp. 195-203 ◽  
Author(s):  
Hideki Hirakawa ◽  
Katsuhiko Sumitomo ◽  
Tamotsu Hisamatsu ◽  
Soichiro Nagano ◽  
Kenta Shirasawa ◽  
...  

Author(s):  
Yifan Zhang ◽  
Weiwei Jiang ◽  
Jun Xu ◽  
Na Wu ◽  
Yang Wang ◽  
...  

ObjectiveThe gut microbiota is associated with nonalcoholic fatty liver disease (NAFLD). We isolated the Escherichia coli strain NF73-1 from the intestines of a NASH patient and then investigated its effect and underlying mechanism.Methods16S ribosomal RNA (16S rRNA) amplicon sequencing was used to detect bacterial profiles in healthy controls, NAFLD patients and NASH patients. Highly enriched E. coli strains were cultured and isolated from NASH patients. Whole-genome sequencing and comparative genomics were performed to investigate gene expression. Depending on the diet, male C57BL/6J mice were further grouped in normal diet (ND) and high-fat diet (HFD) groups. To avoid disturbing the bacterial microbiota, some of the ND and HFD mice were grouped as “bacteria-depleted” mice and treated with a cocktail of broad-spectrum antibiotic complex (ABX) from the 8th to 10th week. Then, E. coli NF73-1, the bacterial strain isolated from NASH patients, was administered transgastrically for 6 weeks to investigate its effect and mechanism in the pathogenic progression of NAFLD.ResultsThe relative abundance of Escherichia increased significantly in the mucosa of NAFLD patients, especially NASH patients. The results from whole-genome sequencing and comparative genomics showed a specific gene expression profile in E. coli strain NF73-1, which was isolated from the intestinal mucosa of NASH patients. E. coli NF73-1 accelerates NAFLD independently. Only in the HFD-NF73-1 and HFD-ABX-NF73-1 groups were EGFP-labeled E. coli NF73-1 detected in the liver and intestine. Subsequently, translocation of E. coli NF73-1 into the liver led to an increase in hepatic M1 macrophages via the TLR2/NLRP3 pathway. Hepatic M1 macrophages induced by E. coli NF73-1 activated mTOR-S6K1-SREBP-1/PPAR-α signaling, causing a metabolic switch from triglyceride oxidation toward triglyceride synthesis in NAFLD mice.ConclusionsE. coli NF73-1 is a critical trigger in the progression of NAFLD. E. coli NF73-1 might be a specific strain for NAFLD patients.


Author(s):  
Yuanchao Liu ◽  
Longhua Huang ◽  
Huiping Hu ◽  
Manjun Cai ◽  
Xiaowei Liang ◽  
...  

Abstract Ganoderma leucocontextum, a newly discovered species of Ganodermataceae in China, has diverse pharmacological activities. G. leucocontextum was widely cultivated in southwest China, but the systematic genetic study has been impeded by the lack of a reference genome. Herein, we present the first whole-genome assembly of G. leucocontextum based on the Illumina and Nanopore platform from high-quality DNA extracted from a monokaryon strain (DH-8). The generated genome was 50.05 Mb in size with a N50 scaffold size of 3.06 Mb, 78,206 coding sequences and 13,390 putative genes. Genome completeness was assessed using the Benchmarking Universal Single-Copy Orthologs (BUSCO) tool, which identified 96.55% of the 280 Fungi BUSCO genes. Furthermore, differences in functional genes of secondary metabolites (terpenoids) were analyzed between G. leucocontextum and G. lucidum. G. leucocontextum has more genes related to terpenoids synthesis compared to G. lucidum, which may be one of the reasons why they exhibit different biological activities. This is the first genome assembly and annotation for G. leucocontextum, which would enrich the toolbox for biological and genetic studies in G. leucocontextum.


Sign in / Sign up

Export Citation Format

Share Document