scholarly journals ddRAD sequencing: an emerging technology added to the biosecurity toolbox for tracing the origin of brown marmorated stink bug, Halyomorpha halys (Hemiptera: Pentatomidae)

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Juncong Yan ◽  
Gábor Vétek ◽  
Chandan Pal ◽  
Jinping Zhang ◽  
Rania Gmati ◽  
...  

Abstract Background Brown marmorated stink bug (BMSB), Halyomorpha halys (Hemiptera: Pentatomidae) is native to East Asia but has invaded many countries in the world. BMSB is a polyphagous insect pest and causes significant economic losses to agriculture worldwide. Knowledge on the genetic diversity among BMSB populations is scarce but is essential to understand the patterns of colonization and invasion history of local populations. Efforts have been made to assess the genetic diversity of BMSB using partial mitochondrial DNA sequences but genetic divergence on mitochondria is not high enough to precisely accurately identify and distinguish various BMSB populations. Therefore, in this study, we applied a ddRAD (double digest restriction-site associated DNA) sequencing approach to ascertain the genetic diversity of BMSB populations collected from 12 countries (2 native and 10 invaded) across four continents with the ultimate aim to trace the origin of BMSBs intercepted during border inspections and post-border surveillance. Result A total of 1775 high confidence single nucleotide polymorphisms (SNPs) were identified from ddRAD sequencing data collected from 389 adult BMSB individuals. Principal component analysis (PCA) of the identified SNPs indicated the existence of two main distinct genetic clusters representing individuals sampled from regions where BMSB is native to, China and Japan, respectively, and one broad cluster comprised individuals sampled from countries which have been invaded by BMSB. The population genetic structure analysis further discriminated the genetic diversity among the BMSB populations at a higher resolution and distinguished them into five potential genetic clusters. Conclusion The study revealed hidden genetic diversity among the studied BMSB populations across the continents. The BMSB populations from Japan were genetically distant from the other studied populations. Similarly, the BMSB populations from China were also genetically differentiated from the Japanese and other populations. Further genetic structure analysis revealed the presence of at least three genetic clusters of BMSB in the invaded countries, possibly originating via multiple invasions. Furthermore, this study has produced novel set of SNP markers to enhance the knowledge of genetic diversity among BMSB populations and demonstrates the potential to trace the origin of BMSB individuals for future invasion events.

2020 ◽  
Author(s):  
Juncong Yan ◽  
Gábor Vétek ◽  
Chandan Pal ◽  
Jinping Zhang ◽  
Rania Gmati ◽  
...  

Abstract BackgroundBrown marmorated stink bug (BMSB), Halyomorpha halys (Hemiptera: Pentatomidae) is native to East Asia but has invaded many countries in the world. It is a polyphagous insect pest and causing significant economic losses to agriculture worldwide. Knowledge on the genetic diversity among BMSB populations is scarce but is essential to understand the patterns of colonization and invasion history of local populations. Efforts have been made to assess the genetic diversity of BMSB using partial mitochondrial DNA sequences but genetic divergence on mitochondria is not high enough to precisely identify and distinguish various BMSB populations. Therefore, in this study, we applied a ddRAD (double digest restriction-site associated DNA) sequencing approach to ascertain the genetic diversity of BMSB populations collected from 12 countries (2 native and 10 invaded) across four continents with the ultimate aim to trace the origin of BMSBs intercepted during border inspections and post-border surveillance.ResultA total of 1775 high confidence single nucleotide polymorphisms (SNPs) were identified from ddRAD sequencing data collected from 389 BMSB individuals. Principal component analysis (PCA) of the identified SNPs indicated the existence of two main distinct genetic clusters representing individuals sampled from regions where BMSB is native to, China and Japan, respectively, and one broad cluster comprised individuals sampled from countries which have been invaded by BMSB. The population genetic structure analysis further discriminated the genetic diversity among the BMSB populations at a higher resolution and distinguished them into five potential genetic clusters. ConclusionThe study revealed hidden genetic diversity among the studied BMSB populations across the continents. The BMSB populations from Japan were genetically distant from the other studied populations. Similarly, the BMSB populations from China were also separated from the Japanese and other populations. Further genetic structure analysis revealed the presence of at least three genetic clusters of BMSB in the invaded countries, possibly originating from multiple invasions. Furthermore, this study has produced novel set of SNP markers to enhance knowledge of genetic diversity among BMSB populations and demonstrate a great potential to trace the origin of BMSB individuals for future invasion events.


2019 ◽  
Vol 29 (1) ◽  
Author(s):  
Elif Tozlu ◽  
Islam Saruhan ◽  
Göksel Tozlu ◽  
Recep Kotan ◽  
Fatih Dadaşoğlu ◽  
...  

AbstractThe brown marmorated stink bug, Halyomorpha halys (Stål, 1855) (Hemiptera: Pentatomidae), is an invasive harmful pest species due to its economic losses. Its wide host range and continuous movement make its control difficult with insecticides. Biological control has recently gained importance due to the negative aspects of chemical control. The study evaluated the biological control tools by testing the entomopathogens against the pest by 11 bacteria strains and 1 fungal isolate. Brevibacillus, Bacillus, Pantoea, Vibrio, Pseudomonas, and Beauveria were tested against the nymphs of H. halys under controlled conditions. All applied entomopathogens had potentials for controlling H. halys. Mortality rates of 75 and 100% were obtained by the bacteria strains and 76.19% by the fungus, B. bassiana. Successfully reaching a 100% control rate, the bacterial isolates of the Bacillus cereus GC subgroup B and Pantoea agglomerans GC subgroup were recorded to have a greater potential than the others.


2017 ◽  
Vol 20 (4) ◽  
pp. 1073-1092 ◽  
Author(s):  
Michele Cesari ◽  
Lara Maistrello ◽  
Lucia Piemontese ◽  
Raoul Bonini ◽  
Paride Dioli ◽  
...  

2020 ◽  
Author(s):  
Juncong Yan ◽  
Chandan Pal ◽  
Diane Anderson ◽  
Gábor Vétek ◽  
Péter Farkas ◽  
...  

Abstract Background: In the past decade, the brown marmorated stink bug (BMSB), Halyomorpha halys (Hemiptera: Pentatomidae) has caused extensive damage to global agriculture. As a high-risk pest for many countries, including New Zealand, it is important to explore its genetic diversity to enhance our knowledge on and devise management strategies for BMSB populations. In this study, two mitochondrial genes, Cytochrome c oxidase I (COI) and Cytochrome c oxidase II (COII) were used to explore the genetic diversity among 463 BMSB individuals collected from 12 countries. Result: In total, 51 COI and 29 COII haplotypes of BMSB were found, which formed 59 combined haplotypes (5 reported and 54 novel). Of these, H1h1 was the predominant haplotype. The haplotype diversity (Hd) and nucleotide diversity (π) were high while the neutrality (Fu's Fs) values were negative for the BMSB populations in the native countries, China, and Japan. For the BMSB populations from the invaded countries, the Fu's Fs values were negative for populations from Chile, Georgia, Hungary, Italy, Romania, Turkey, and USA, indicating that those populations are under demographic expansion. In comparison, the Fu's Fs values were positive for the populations from Austria, Serbia, and Slovenia, revealing a potential population bottleneck. Analysis of molecular variance (AMOVA) suggested that significant genetic difference exist between groups of populations: China, Japan, and the invasive populations. Conclusion: This study revealed that the haplotype diversity of the BMSB populations was high in those two studied countries where BMSB is native to (China and Japan) but low in those countries which have been invaded by the species. The analysis indicated that multiple invasions of BMSB occurred and a new stable genetic cluster has established in Europe and the USA. The study also revealed that three ancestral lines and most of the novel haplotypes were evolved from them. Moreover, we observed two genetic clusters in the invasive populations that are formed during different invasion events. Our study provided a comprehensive overview on the global haplotypes distribution thus expanding the existing knowledge on BMSB genetic diversity that potentially could play an important role in formulating feasible pest management strategies, especially biocontrol.


2020 ◽  
Author(s):  
Juncong Yan ◽  
Chandan Pal ◽  
Diane Anderson ◽  
Gábor Vétek ◽  
Péter Farkas ◽  
...  

Abstract Background: In the past decade, the brown marmorated stink bug (BMSB), Halyomorpha halys (Hemiptera: Pentatomidae) has caused extensive damage to global agriculture. As a high-risk pest for many countries, including New Zealand, it is important to explore its genetic diversity to enhance our knowledge on and devise management strategies for BMSB populations. In this study, two mitochondrial genes, Cytochrome c oxidase I (COI) and Cytochrome c oxidase II (COII) were used to explore the genetic diversity among 463 BMSB individuals collected from 12 countries.Result: In total, 51 COI and 29 COII haplotypes of BMSB were found, which formed 59 combined haplotypes (5 reported and 54 novel). Of these, H1h1 was the predominant haplotype. The haplotype diversity (Hd) and nucleotide diversity (π) were high while the neutrality (Fu's Fs) values were negative for the BMSB populations in the native countries, China, and Japan. For the BMSB populations from the invaded countries, the Fu's Fs values were negative for populations from Chile, Georgia, Hungary, Italy, Romania, Turkey, and USA, indicating that those populations are under demographic expansion. In comparison, the Fu's Fs values were positive for the populations from Austria, Serbia, and Slovenia, revealing a potential population bottleneck. Analysis of molecular variance (AMOVA) suggested that significant genetic difference exist between groups of populations: China, Japan, and the invasive populations.Conclusion: This study revealed that the haplotype diversity of the BMSB populations was high in those two studied countries where BMSB is native to (China and Japan) but low in those countries which have been invaded by the species. The analysis indicated that multiple invasions of BMSB occurred and a new stable genetic cluster has established in Europe and the USA. The study also revealed that three ancestral lines and most of the novel haplotypes were evolved from them. Moreover, we observed two genetic clusters in the invasive populations that are formed during different invasion events. Our study provided a comprehensive overview on the global haplotypes distribution thus expanding the existing knowledge on BMSB genetic diversity that potentially could play an important role in formulating feasible pest management strategies, especially biocontrol.


2020 ◽  
Author(s):  
Juncong Yan ◽  
Chandan Pal ◽  
Diane Anderson ◽  
Gábor Vétek ◽  
Péter Farkas ◽  
...  

Abstract Background:In the past decade, the brown marmorated stink bug (BMSB), Halyomorpha halys (Hemiptera: Pentatomidae) has caused extensive damage to global agriculture. As a high-risk pest for many countries, including New Zealand, it is important to explore its genetic diversity to enhance our knowledge on and devise management strategies for BMSB populations. In this study, two mitochondrial genes, Cytochrome c oxidase I (COI) and Cytochrome c oxidase II (COII) were used to explore the genetic diversity among 463 BMSB individuals collected from 12 countries.Result:In total, 51 COI and 29 COII haplotypes of BMSB were found, which formed 59 combined haplotypes (5 reported and 54 novel). Of these, H1h1 was the predominant haplotype. The haplotype diversity (Hd) and nucleotide diversity (π) were high while the neutrality (Fu's Fs) values were negative for the BMSB populations in the native countries, China, and Japan. For the BMSB populations from the invaded countries, the Fu's Fs values were negative for populations from Chile, Georgia, Hungary, Italy, Romania, Turkey, and USA, indicating that those populations are under demographic expansion. In comparison, the Fu's Fs values were positive for the populations from Austria, Serbia, and Slovenia, revealing a potential population bottleneck. Analysis of molecular variance (AMOVA) suggested that significant genetic difference exist between groups of populations: China, Japan, and the invasive populations.Conclusion:This study revealed that the haplotype diversity of the BMSB populations was high in those two studied countries where BMSB is native to (China and Japan) but low in those countries which have been invaded by the species. The analysis indicated that multiple invasions of BMSB occurred and a new stable genetic cluster has established in Europe and USA. The study also revealed that three ancestral lines and most of the novel haplotypes were evolved from them. Moreover, we observed two genetic clusters in the invasive populations that are formed during different invasion events. Our study provided a comprehensive overview on the global haplotypes distribution thus expanding the existing knowledge on BMSB genetic diversity that potentially could play an important role in formulating feasible pest management strategies, especially biocontrol.


2020 ◽  
Author(s):  
Juncong Yan ◽  
Chandan Pal ◽  
Diane Anderson ◽  
Gábor Vétek ◽  
Péter Farkas ◽  
...  

Abstract Background: In the past decade, the brown marmorated stink bug (BMSB), Halyomorpha halys (Hemiptera: Pentatomidae) has caused extensive damage to global agriculture. As a high-risk pest for many countries, including New Zealand, it is important to explore its genetic diversity to enhance our knowledge and devise management strategies for BMSB populations. In this study, two mitochondrial genes, Cytochrome c oxidase I (COI) and Cytochrome c oxidase II (COII) were used to explore the genetic diversity among 463 BMSB individuals collected from 12 countries. Result: In total, 51 COI and 29 COII haplotypes of BMSB were found, which formed 59 combined haplotypes (5 reported and 54 novel). Of these, H1h1 was the predominant haplotype. The haplotype diversity ( Hd ) and nucleotide diversity ( π ) were high while the neutrality (Fu's Fs) values were negative for the BMSB populations in the native countries, China, and Japan. For the BMSB populations from the invaded countries, the Fu's Fs values were negative for populations from Chile, Georgia, Hungary, Italy, Romania, Turkey, and USA, indicating that those populations are under demographic expansion. In comparison, the Fu's Fs values were positive for the populations from Austria, Serbia, and Slovenia, revealing a potential population bottleneck. Analysis of molecular variance (AMOVA) suggested that significant genetic difference exists among the BMSB populations from China, Japan, and the invasive countries. Conclusion: This study revealed that the haplotype diversity of the BMSB populations was high in those two studied countries where BMSB is native to (China and Japan) but low in those countries which have been invaded by the species. The analysis indicated that multiple invasions of BMSB occurred in Europe and the USA. The study also revealed three ancestral lines and most of the novel haplotypes were evolved from them. Moreover, we observed two genetic clusters in the invasive populations that are formed during different invasion events. Our study provided a comprehensive overview on the global haplotypes distribution thus expanding the existing knowledge on BMSB genetic diversity that potentially could play an important role in formulating feasible pest management strategies.


NeoBiota ◽  
2021 ◽  
Vol 68 ◽  
pp. 53-77
Author(s):  
Tara D. Gariepy ◽  
Dmitry L. Musolin ◽  
Aleksandra Konjević ◽  
Natalia N. Karpun ◽  
Vilena Y. Zakharchenko ◽  
...  

The arrival, establishment and pest status of Halyomorpha halys in Europe and non-native countries in Asia have been well-documented, with thorough characterisation of the genetic diversity and occurrence of cytochrome oxidase I (COI) haplotypes in Switzerland, France, Hungary, Italy and Greece. However, a number of gaps exist in terms of the characterisation of the haplotype diversity and occurrence of H. halys along the invasion front that covers eastern Europe, western and central Asia. To contribute towards filling this gap, the COI haplotype diversity and distribution were investigated for H. halys collected in Serbia, Ukraine, Russia, Georgia and Kazakhstan. A total of 646 specimens were analysed and five haplotypes were found (H1, H3, H8, H33 and H80). Haplotype H1 was present in all five countries investigated and was the only haplotype detected amongst > 500 specimens collected from Ukraine, Russia and Georgia. H1 (82%) was the dominant haplotype found in Kazakhstan, alongside H3 (18%). In contrast to the low or no diversity observed in these four countries, Serbia had higher haplotype diversity and was represented by five haplotypes. Although H3 was dominant (47%) in Serbia, H1 was also prevalent (40%); the remaining haplotypes (H8, H33 and H80) were minor contributors (1–11%) to the haplotype composition. The results are discussed in context with other known populations in neighbouring countries and patterns of haplotype diversity indicate the movement of successful invasive populations in Europe to generate secondary invasions along the eastern front of the invasion in Eurasia. Possible scenarios regarding the spread of particular haplotypes in these regions are discussed, along with suggestions for future research to fill existing gaps.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Juncong Yan ◽  
Chandan Pal ◽  
Diane Anderson ◽  
Gábor Vétek ◽  
Péter Farkas ◽  
...  

Abstract Background In the past decade, the brown marmorated stink bug (BMSB), Halyomorpha halys (Hemiptera: Pentatomidae) has caused extensive damage to global agriculture. As a high-risk pest for many countries, including New Zealand, it is important to explore its genetic diversity to enhance our knowledge and devise management strategies for BMSB populations. In this study, two mitochondrial genes, Cytochrome c oxidase I (COI) and Cytochrome c oxidase II (COII) were used to explore the genetic diversity among 463 BMSB individuals collected from 12 countries. Result In total, 51 COI and 29 COII haplotypes of BMSB were found, which formed 59 combined haplotypes (5 reported and 54 novel). Of these, H1h1 was the predominant haplotype. The haplotype diversity (Hd) and nucleotide diversity (π) were high while the neutrality (Fu’s Fs) values were negative for the BMSB populations in the native countries, China, and Japan. For the BMSB populations from the invaded countries, the Fu’s Fs values were negative for populations from Chile, Georgia, Hungary, Italy, Romania, Turkey, and USA, indicating that those populations are under demographic expansion. In comparison, the Fu’s Fs values were positive for the populations from Austria, Serbia, and Slovenia, revealing a potential population bottleneck. Analysis of molecular variance (AMOVA) suggested that significant genetic difference exists among the BMSB populations from China, Japan, and the invasive countries. Conclusion This study revealed that the haplotype diversity of the BMSB populations was high in those two studied countries where BMSB is native to (China and Japan) but low in those countries which have been invaded by the species. The analysis indicated that multiple invasions of BMSB occurred in Europe and the USA. The study also revealed three ancestral lines and most of the novel haplotypes were evolved from them. Moreover, we observed two genetic clusters in the invasive populations that are formed during different invasion events. Our study provided a comprehensive overview on the global haplotypes distribution thus expanding the existing knowledge on BMSB genetic diversity that potentially could play an important role in formulating feasible pest management strategies.


Sign in / Sign up

Export Citation Format

Share Document