scholarly journals Phenotypic and molecular characterization of a set of tropical maize inbred lines from a public breeding program in Brazil

BMC Genomics ◽  
2022 ◽  
Vol 23 (1) ◽  
Sirlene Viana de Faria ◽  
Leandro Tonello Zuffo ◽  
Wemerson Mendonça Rezende ◽  
Diego Gonçalves Caixeta ◽  
Hélcio Duarte Pereira ◽  

Abstract Background The characterization of genetic diversity and population differentiation for maize inbred lines from breeding programs is of great value in assisting breeders in maintaining and potentially increasing the rate of genetic gain. In our study, we characterized a set of 187 tropical maize inbred lines from the public breeding program of the Universidade Federal de Viçosa (UFV) in Brazil based on 18 agronomic traits and 3,083 single nucleotide polymorphisms (SNP) markers to evaluate whether this set of inbred lines represents a panel of tropical maize inbred lines for association mapping analysis and investigate the population structure and patterns of relationships among the inbred lines from UFV for better exploitation in our maize breeding program. Results Our results showed that there was large phenotypic and genotypic variation in the set of tropical maize inbred lines from the UFV maize breeding program. We also found high genetic diversity (GD = 0.34) and low pairwise kinship coefficients among the maize inbred lines (only approximately 4.00 % of the pairwise relative kinship was above 0.50) in the set of inbred lines. The LD decay distance over all ten chromosomes in the entire set of maize lines with r2 = 0.1 was 276,237 kb. Concerning the population structure, our results from the model-based STRUCTURE and principal component analysis methods distinguished the inbred lines into three subpopulations, with high consistency maintained between both results. Additionally, the clustering analysis based on phenotypic and molecular data grouped the inbred lines into 14 and 22 genetic divergence clusters, respectively. Conclusions Our results indicate that the set of tropical maize inbred lines from UFV maize breeding programs can comprise a panel of tropical maize inbred lines suitable for a genome-wide association study to dissect the variation of complex quantitative traits in maize, mainly in tropical environments. In addition, our results will be very useful for assisting us in the assignment of heterotic groups and the selection of the best parental combinations for new breeding crosses, mapping populations, mapping synthetic populations, guiding crosses that target highly heterotic and yielding hybrids, and predicting untested hybrids in the public breeding program UFV.

Genetika ◽  
2015 ◽  
Vol 47 (2) ◽  
pp. 489-498
Ana Nikolic ◽  
Dragana Ignjatovic-Micic ◽  
Dragan Kovacevic ◽  
Zoran Camdzija ◽  
Milomir Filipovic ◽  

Creating new maize hybrids with greater yield potential is a permanent goal of breeding programs all over the world. Long-time existing and new problems related to different biotic and abiotic stresses and the growing needs of the world market require constant work on finding new ways for advancing maize production. Molecular marker technology is one of the fastest developing fields and its implementation has already given results in solving different problems related to maize breeding improvement. The aim of the study presented herein was characterization and genetic similarity assessment of twenty-nine maize inbred lines from Maize Research Institute collection using Simple Sequence Repeats (SSR) markers. The analysis was done using 20 pairs of SSR primers with clearly visible and reproducible results. A total of 119 alleles were detected with a mean of 5.8 per locus. PIC (Polymorphism Information Content) values were in the range from 0.45 to 0.92 (average 0.74). Genetic similarities calculated using Jaccard?s coefficient ranged from 0.27 to 0.99. Cluster and Principal Component Analysis (PCA) analysis were done using matrices of similarity in the NTSYSpc software, version 2.1. Results of both classifications were moderately in agreement with the pedigree data of analysed genotypes. The information about genetic diversity of maize inbred lines revealed by SSR markers could be useful in planning strategies for future maize breeding programs.

PLoS ONE ◽  
2019 ◽  
Vol 14 (4) ◽  
pp. e0214810 ◽  
Gloria Boakyewaa Adu ◽  
Baffour Badu-Apraku ◽  
Richard Akromah ◽  
Ana Luisa Garcia-Oliveira ◽  
Frederick Justice Awuku ◽  

2019 ◽  
Vol 30 (1) ◽  
pp. 25-33
E.A. Rossi ◽  
M. Ruiz ◽  
M. Di Renzo ◽  
N.C. Bonamico

CIMMYT maize inbred lines (CMLs) are freely distributed to breeding programs around the world. Better information on phenotypic and genotypic diversity may provide guidance to breeders on how to use more efficiently the CMLs in their breeding programs. In this study a group of 291 CIMMYT maize inbred lines, was phenotyped by nine agro-morphological traits in south Córdoba, Argentina and genotyped using 18,082 SNPs. Based on the geographic information and the environmental adaptation, 291 CMLs were classified into eight subgroups. Anthesis-silking interval (IAE) was the trait with higher phenotypic diversity. A 40% of maize inbred lines, with IAE less than five days, show a good adaptation to growing conditions in south Córdoba, Argentina. The low phenotypic variation explained by environmental adaptation subgroups indicates that population structure is only a minor factor contributing to phenotypic diversity in this panel. Principal component analysis (ACP) allowed us to obtain phenotypic and genotypic orderings. Generalized procrustes analysis (APG) indicated a 60% consensus between both data type from the total panel of maize lines. In each environmental adaptation subgroup, the APG consensus was higher. This result, which might indicate linkage disequilibrium between SNPs markers and the genes controlling these agro-morphological traits, is promising and could be used as an initial tool in the identification of Quantitative Trait Loci (QTL). Information on genetic diversity, population structure and phenotypic diversity in local environments will help maize breeders to better understand how to use the current CIMMYT maize inbred lines group. Key words: broad-sense heritability, multivariate analysis, SNPs, agro-morphological traits.

2010 ◽  
Vol 120 (7) ◽  
pp. 1289-1299 ◽  
Delphine Van Inghelandt ◽  
Albrecht E. Melchinger ◽  
Claude Lebreton ◽  
Benjamin Stich

2000 ◽  
Vol 119 (6) ◽  
pp. 491-496 ◽  
L. L. Benchimol ◽  
C. L. de Souza jr ◽  
A. A. F. Garcia ◽  
P. M. S. Kono ◽  
C. A. Mangolin ◽  

Maizura Abu Sin ◽  
Ghizan Saleh ◽  
Nur Ashikin Psyquay Abdullah ◽  
Pedram Kashiani

Genetic diversity and phenotypic superiority are important attributes of parental inbred lines for use in hybrid breeding programs. In this study, genetic diversity among 30 maize (Zea mays L.) inbred lines comprising of 28 introductions from the International Maize and Wheat Improvement Center (CIMMYT), one from Indonesia and a locally developed, were evaluated using 100 simple sequence repeat (SSR) markers, as early screening for potential parents of hybrid varieties. All markers were polymorphic, with a total of 550 unique alleles detected on the 100 loci from the 30 inbred lines. Allelic richness ranged from 2 to 13 per locus, with an average of 5.50 alleles (na). Number of effective alleles (ne) was 3.75 per locus, indicating their high effectiveness in revealing diversity among inbred lines. Average polymorphic information content (PIC) was 0.624, with values ranging from 0.178 to 0.874, indicating high informativeness of the markers. High gene diversity was observed on Chromosomes 8 and 4, with high number of effective alleles, indicating their potential usefulness for QTL analysis. The UPGMA dendrogram constructed identified four heterotic groups within a similarity index of 0.350, indicating that these markers were able to group the inbred lines. The three-dimensional PCoA plot also supports the dendrogram grouping, indicating that these two methods complement each other. Inbred lines in different heterotic groups have originated from different backgrounds and population sources. Information on genetic diversity among the maize inbred lines are useful in developing strategies exploiting heterosis in breeding programs

Sign in / Sign up

Export Citation Format

Share Document