scholarly journals Profile of gene expression changes during estrodiol-17β-induced feminization in the Takifugu rubripes brain

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Xufang Shen ◽  
Hongwei Yan ◽  
Jieming Jiang ◽  
Weiyuan Li ◽  
Yuyu Xiong ◽  
...  

Abstract Background As the critical tissue of the central nervous system, the brain has been found to be involved in gonad development. Previous studies have suggested that gonadal fate may be affected by the brain. Identifying brain-specific molecular changes that occur during estrodiol-17β (E2) -induced feminization is crucial to our understanding of the molecular control of sex differentiation by the brains of fish. Results In this study, the differential transcriptomic responses of the Takifugu rubripes larvae brain were compared after E2 treatment for 55 days. Our results showed that 514 genes were differentially expressed between E2-treated-XX (E-XX) and Control-XX (C-XX) T. rubripes, while 362 genes were differentially expressed between E2-treated-XY (E-XY) and Control-XY (C-XY). For example, the expression of cyp19a1b, gnrh1 and pgr was significantly up-regulated, while st, sl, tshβ, prl and pit-1, which belong to the growth hormone/prolactin family, were significantly down-regulated after E2 treatment, in both sexes. The arntl1, bhlbe, nr1d2, per1b, per3, cry1, cipc and ciart genes, which are involved in the circadian rhythm, were also found to be altered. Differentially expressed genes (DEGs), which were identified between E-XX and C-XX, were significantly enriched in neuroactive ligand-receptor interaction, arachidonic acid metabolism, cytokine-cytokine receptor interaction and the calcium signaling pathway. The DEGs that were identified between E-XY and C-XY were significantly enriched in tyrosine metabolism, phenylalanine metabolism, arachidonic acid metabolism and linoleic acid metabolism. Conclusion A number of genes and pathways were identified in the brain of E2-treated T. rubripes larvae by RNA-seq. It provided the opportunity for further study on the possible involvement of networks in the brain-pituitary-gonadal axis in sex differentiation in T. rubripes.

2021 ◽  
Author(s):  
Xufang Shen ◽  
Hongwei Yan ◽  
Jieming Jiang ◽  
Weiyuan Li ◽  
Yuyu Xiong ◽  
...  

Abstract Background: As the critical tissue of the central nervous system, the brain has been found to be involved in gonad development. Previous studies have suggested that gonadal fate may be affected by the brain. Identifying brain-specific molecular changes that occur during estrodiol-17β (E2) ‑induced feminization is crucial to our understanding of the molecular control of sex differentiation by the brains of fish. Results: In this study, the differential transcriptomic responses of the Takifugu rubripes larvae brain were compared after E2 treatment for 55 days. Our results showed that 514 genes were differentially expressed between E2-treated-XX (E-XX) and Control-XX (C-XX) T. rubripes, while 362 genes were differentially expressed between E2-treated-XY (E-XY) and Control-XY (C-XY). For example, the expression of cyp19a1b, gnrh1 and pgr was significantly up-regulated, while st, sl, tshβ, prl and pit-1, which belong to the growth hormone/prolactin family, were significantly down-regulated after E2 treatment, in both sexes. The arntl1, bhlbe, nr1d2, per1b, per3, cry1, cipc and ciart genes, which are involved in the circadian rhythm, were also found to be altered. Differentially expressed genes (DEGs), which were identified between E-XX and C-XX, were significantly enriched in neuroactive ligand-receptor interaction, arachidonic acid metabolism, cytokine-cytokine receptor interaction and the calcium signaling pathway. The DEGs that were identified between E‑XY and C-XY were significantly enriched in tyrosine metabolism, phenylalanine metabolism, arachidonic acid metabolism and linoleic acid metabolism. Conclusion: By using transcriptome sequencing of XX and XY brains of torafugu larvae showed that many genes and pathways were altered by E2 exposure. They provide the opportunity to further study the possible involvement of networks in the brain-pituitary-gonadal axis in sex differentiation in T. rubripes.


1985 ◽  
Vol 110 (1_Suppla) ◽  
pp. S53-S54
Author(s):  
ST. NIESERT ◽  
M. D. MITCHELL ◽  
M. L. CASEY ◽  
P. C. MACDONALD

Diabetes ◽  
1988 ◽  
Vol 37 (7) ◽  
pp. 992-996 ◽  
Author(s):  
J. Turk ◽  
J. H. Hughes ◽  
R. A. Easom ◽  
B. A. Wolf ◽  
D. W. Scharp ◽  
...  

Author(s):  
Elisa Domi ◽  
Malvina Hoxha ◽  
Bianka Hoxha ◽  
Bruno Zappacosta

Purpose: Hyperhomocysteinemia (HHcy) has been considered a risk factor for different diseases including cardiovascular disease (CVD), inflammation, neurological diseases, cancer and many other pathological conditions. Likewise, arachidonic acid (AA) metabolism is implicated in both vascular homeostasis and inflammation as shown by the development of CVD following the imbalance of its metabolites. Aim of The Review: This review summarizes how homocysteine (Hcy) can influence the metabolism of AA. Methods: In silico literature searches were performed on PubMed and Scopus as main sources. Results: Several studies have shown that altered levels of Hcy, through AA release and metabolism, can influence the synthesis and the activity of prostaglandins (PGs), prostacyclin (PGI₂), thromboxane (TXA), epoxyeicosatrienoic acids (EETs) and hydroxyeicosatetraenoic acids (HETEs). Conclusions: We believe that by targeting Hcy in AA pathways, novel compounds with better pharmacological and pharmacodynamics benefits may be obtained and that this information is valuable for dietician to manipulate diets to improve health.


Sign in / Sign up

Export Citation Format

Share Document