doxorubicin toxicity
Recently Published Documents


TOTAL DOCUMENTS

97
(FIVE YEARS 15)

H-INDEX

22
(FIVE YEARS 2)

Biomolecules ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 63
Author(s):  
Rosamaria Pennisi ◽  
Maria Musarra-Pizzo ◽  
Tania Velletri ◽  
Antonino Mazzaglia ◽  
Giulia Neri ◽  
...  

In the last decade, nanotechnological progress has generated new opportunities to improve the safety and efficacy of conventional anticancer therapies. Compared with other carriers, graphene nanoplatforms possess numerous tunable functionalities for the loading of multiple bioactive compounds, although their biocompatibility is still a debated concern. Recently, we have investigated the modulation of genes involved in cancer-associated canonical pathways induced by graphene engineered with cyclodextrins (GCD). Here, we investigated the GCD impact on cells safety, the HEp-2 responsiveness to Doxorubicin (DOX) and the cancer-related intracellular signalling pathways modulated by over time exposure to DOX loaded on GCD (GCD@DOX). Our studies evidenced that both DOX and GCD@DOX induced p53 and p21 signalling resulting in G0/G1 cell cycle arrest. A genotoxic behaviour of DOX was reported via detection of CDK (T14/Y15) activation and reduction of Wee-1 expression. Similarly, we found a cleavage of PARP by DOX within 72 h of exposure. Conversely, GCD@DOX induced a late cleavage of PARP, which could be indicative of less toxic effect due to controlled release of the drug from the GCD nanocarrier. Finally, the induction of the autophagy process supports the potential recycling of DOX with the consequent limitation of its toxic effects. Together, these findings demonstrate that GCD@DOX is a biocompatible drug delivery system able to evade chemoresistance and doxorubicin toxicity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jerónimo Laiolo ◽  
Priscila Ailin Lanza ◽  
Oscar Parravicini ◽  
Cecilia Barbieri ◽  
Daniel Insuasty ◽  
...  

AbstractP-gp-associated multidrug resistance is a major impediment to the success of chemotherapy. With the aim of finding non-toxic and effective P-gp inhibitors, we investigated a panel of quinolin-2-one-pyrimidine hybrids. Among the active compounds, two of them significantly increased intracellular doxorubicin and rhodamine 123 accumulation by inhibiting the efflux mediated by P-gp and restored doxorubicin toxicity at nanomolar range. Structure–activity relationships showed that the number of methoxy groups, an optimal length of the molecule in its extended conformation, and at least one flexible methylene group bridging the quinolinone to the moiety bearing the pyrimidine favored the inhibitory potency of P-gp. The best compounds showed a similar binding pattern and interactions to those of doxorubicin and tariquidar, as revealed by MD and hybrid QM/MM simulations performed with the recent experimental structure of P-gp co-crystallized with paclitaxel. Analysis of the molecular interactions stabilizing the different molecular complexes determined by MD and QTAIM showed that binding to key residues from TMH 4–7 and 12 is required for inhibition.


2021 ◽  
Author(s):  
Jerónimo Laiolo ◽  
Priscila Ailin Lanza ◽  
Oscar Parravicini ◽  
Cecilia Barbieri ◽  
Daniel Insuasty ◽  
...  

Abstract P-gp-associated multidrug resistance (MDR) is a major impediment to the success of chemotherapy. With the aim of finding non-toxic and effective P-gp inhibitors, we investigated a panel of quinolin-2-one-pyrimidine hybrids. Among the active compounds, two of them significantly increased intracellular doxorubicin and rhodamine 123 accumulation by inhibiting the efflux mediated by P-gp and restored doxorubicin toxicity at nanomolar range. Structure-activity relationships showed that the number of methoxy groups, an optimal length of the molecule in its extended conformation, and at least one flexible methylene group bridging the quinolinone moiety favored the inhibitory potency of P-gp. The best compounds showed a similar binding pattern and interactions to those of doxorubicin and tariquidar, as revealed by MD and hybrid QM/MM simulations performed with the recent experimental structure of P-gp co-crystallized with paclitaxel. Analysis of the molecular interactions stabilizing the different molecular complexes determined by MD and QTAIM showed that binding to key residues from TMH 4–7 and 12 is required for inhibition.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1724
Author(s):  
Noemi Bognanni ◽  
Francesco Bellia ◽  
Maurizio Viale ◽  
Nadia Bertola ◽  
Graziella Vecchio

Over the years, cyclodextrin uses have been widely reviewed and their proprieties provide a very attractive approach in different biomedical applications. Cyclodextrins, due to their characteristics, are used to transport drugs and have also been studied as molecular chaperones with potential application in protein misfolding diseases. In this study, we designed cyclodextrin polymers containing different contents of β- or γ-cyclodextrin, and a different number of guanidinium positive charges. This allowed exploration of the influence of the charge in delivering a drug and the effect in the protein anti-aggregant ability. The polymers inhibit Amiloid β peptide aggregation; such an ability is modulated by both the type of CyD cavity and the number of charges. We also explored the effect of the new polymers as drug carriers. We tested the Doxorubicin toxicity in different cell lines, A2780, A549, MDA-MB-231 in the presence of the polymers. Data show that the polymers based on γ-cyclodextrin modified the cytotoxicity of doxorubicin in the A2780 cell line.


Author(s):  
Bin Li ◽  
Xinyong Cai ◽  
Yunxia Wang ◽  
Hongmin Zhu ◽  
Ping Zhang ◽  
...  
Keyword(s):  

Cancers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3466
Author(s):  
Edson Alves de Lima ◽  
Alexandre Abilio de Souza Teixeira ◽  
Luana Amorim Biondo ◽  
Tiego Aparecido Diniz ◽  
Loreana Sanches Silveira ◽  
...  

The pathogenesis of muscle atrophy plays a central role in cancer cachexia, and chemotherapy contributes to this condition. Therefore, the present study aimed to evaluate the effects of endurance exercise on time-dependent muscle atrophy caused by doxorubicin. For this, C57 BL/6 mice were subcutaneously inoculated with Lewis lung carcinoma cells (LLC group). One week after the tumor establishment, a group of these animals initiated the doxorubicin chemotherapy alone (LLC + DOX group) or combined with endurance exercise (LLC + DOX + EXER group). One group of animals was euthanized after the chemotherapy cycle, whereas the remaining animals were euthanized one week after the last administration of doxorubicin. The practice of exercise combined with chemotherapy showed beneficial effects such as a decrease in tumor growth rate after chemotherapy interruption and amelioration of premature death due to doxorubicin toxicity. Moreover, the protein degradation levels in mice undergoing exercise returned to basal levels after chemotherapy; in contrast, the mice treated with doxorubicin alone experienced an increase in the mRNA expression levels of the proteolytic pathways in gastrocnemius muscle (Trim63, Fbxo32, Myostatin, FoxO). Collectively, our results suggest that endurance exercise could be utilized during and after chemotherapy for mitigating muscle atrophy promoted by doxorubicin and avoid the resumption of tumor growth.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Elena Piegari ◽  
Anna Cozzolino ◽  
Loreta Pia Ciuffreda ◽  
Donato Cappetta ◽  
Antonella De Angelis ◽  
...  

2020 ◽  
Vol 33 (1) ◽  
pp. 1-5
Author(s):  
Agnieszka Korga ◽  
Magdalena Iwan ◽  
Dariusz Matosiuk ◽  
Marzena Rzadkowska ◽  
Elzbieta Szacon ◽  
...  

AbstractDoxorubicin cardiotoxicity is caused by various mechanisms, most importantly by oxidative stress originating in the mitochondria. Tirapazamine is a hypoxia-activated anticancer experimental drug. Both drugs in normoxia conditions undergo univalent reduction, thus tirapazamine may compete with doxorubicin in univalent reduction enzyme uptake. Herein, tirapazamine derivatives consisted of drug molecules and alkyl chain-connected triphenylphosphine cations that bring about an accumulation in mitochondria. The aim of this study was to evaluate the interaction of newly synthesized tirapazamine derivatives with doxorubicin in rat cardiomyocytes via an vitro model. In the work, H9C2 cells were incubated with combinations of doxorubicin, tirapazamine and seven variants of tirapazamine derivatives. After 24 hours, cell viability was assessed using MTT assay and the results were confirmed by microscopic observation. Tirapazamine in all tested concentrations did not revealed significant protective activity to cardiomyocytes treated with doxorubicine. However, tirapazamine derivatives diminished the cytotoxic effect of doxorubicin regardless of concentration and alkyl chain length. Tirapazamine derivatives have shown protective effects in relation to cardiomyocytes treated with doxorubicin and the mechanism of this phenomenon must be confirmed.


Sign in / Sign up

Export Citation Format

Share Document