scholarly journals Deciphering microbial diversity associated with Fusarium wilt-diseased and disease-free banana rhizosphere soil

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Dengbo Zhou ◽  
Tao Jing ◽  
Yufeng Chen ◽  
Fei Wang ◽  
Dengfeng Qi ◽  
...  
2021 ◽  
Vol 22 (7) ◽  
pp. 3438
Author(s):  
Juan Liu ◽  
Xiangwei He ◽  
Jingya Sun ◽  
Yuchao Ma

Bacterial communities associated with roots influence the health and nutrition of the host plant. However, the microbiome discrepancy are not well understood under different healthy conditions. Here, we tested the hypothesis that rhizosphere soil microbial diversity and function varies along a degeneration gradient of poplar, with a focus on plant growth promoting bacteria (PGPB) and antibiotic resistance genes. Comprehensive metagenomic analysis including taxonomic investigation, functional detection, and ARG (antibiotics resistance genes) annotation revealed that available potassium (AK) was correlated with microbial diversity and function. We proposed several microbes, Bradyrhizobium, Sphingomonas, Mesorhizobium, Nocardioides, Variovorax, Gemmatimonadetes, Rhizobacter, Pedosphaera, Candidatus Solibacter, Acidobacterium, and Phenylobacterium, as candidates to reflect the soil fertility and the plant health. The highest abundance of multidrug resistance genes and the four mainly microbial resistance mechanisms (antibiotic efflux, antibiotic target protection, antibiotic target alteration, and antibiotic target replacement) in healthy poplar rhizosphere, corroborated the relationship between soil fertility and microbial activity. This result suggested that healthy rhizosphere soil harbored microbes with a higher capacity and had more complex microbial interaction network to promote plant growing and reduce intracellular levels of antibiotics. Our findings suggested a correlation between the plant degeneration gradient and bacterial communities, and provided insight into the role of high-turnover microbial communities as well as potential PGPB as real-time indicators of forestry soil quality, and demonstrated the inner interaction contributed by the bacterial communities.


2020 ◽  
Vol 158 (2) ◽  
pp. 495-509 ◽  
Author(s):  
P. Ndayihanzamaso ◽  
P. Karangwa ◽  
D. Mostert ◽  
G. Mahuku ◽  
G. Blomme ◽  
...  

Abstract Banana is a staple food and cash crop grown in East and Central Africa (ECA). The main banana varieties grown in ECA are the East African highland bananas (EAHB), although dessert/beer bananas such as Sukari Ndizi, Kayinja (Pisang Awak) and Gros Michel are also produced due to their high value at local markets. The Fusarium wilt fungus Fusarium oxysporum f. sp. cubense (Foc) causes disease of susceptible dessert/beer bananas, which significantly reduces yields. Banana Fusarium wilt is managed by excluding the pathogen from disease-free areas and by planting disease-resistant varieties in infested fields. Six phylogenetically closely-related vegetative compatibility groups (VCGs) of Foc, VCGs 0124, 0125, 0128, 01212, 01220 and 01222 are present in ECA, which all group together in Foc Lineage VI. Rapid and accurate detection of Foc Lineage VI strains is thus important to prevent its spread to disease-free areas. In this study, molecular markers specific to Foc Lineage VI were therefore developed. Primer sets were then combined in a multiplex PCR assay, and validated on a worldwide population of 623 known Foc isolates, other formae speciales and non-pathogenic Fusarium oxysporum isolates. The Foc Lineage VI multiplex PCR was used to identify Foc isolates collected in banana fields at five locations in Uganda and Tanzania. Foc Lineage VI DNA was detected at a concentration as low as 0.1 ng/μl, both in the absence and presence of banana DNA, and can therefore be used as an accurate diagnostic tool for Foc Lineage VI strains.


2013 ◽  
Vol 295-298 ◽  
pp. 2274-2280 ◽  
Author(s):  
Xiao Deng ◽  
Qin Fen Li ◽  
Xian Wen Hou ◽  
Chun Yuan Wu

Thirty rhizosphere and non-rhizosphere soil samples from different infection grades(0, I, III, V and VII) of three typical banana plots(Jianfeng, Shiyuetian, Chongpo) infected by banana fusarium wilt (Fusarium oxysporum f. sp. cubense) in Hainan province were collected to study the microbial community functional diversity applying Biolog-ECO microplates technology. The results are as follows: (1) Overall carbon source metabolic capacities of soil microbial community weaken with increasing of infection grades of banana fusarium wilt. (2) Richness indices, Simpson indices, Shannon indices and McIntosh indices of soil microbial community gradually decreased with increasing of infection grades of banana fusarium wilt. (3) Principal component analysis show that metabolic characteristics of soil microbial community significantly change between the healthy plants and diseased plants in the same banana plot. The results would provide information for explaining the pathogenesis of banana fusarium wilt and controlling its incidence by applying microbial ecology to regulate soil environmental measures.


2012 ◽  
Vol 48 (7) ◽  
pp. 807-816 ◽  
Author(s):  
Meihua Qiu ◽  
Ruifu Zhang ◽  
Chao Xue ◽  
Shusheng Zhang ◽  
Shuqing Li ◽  
...  

2020 ◽  
Author(s):  
Ying Zhang ◽  
Wenhui Liu ◽  
Xilai Li ◽  
Zhiying Zhang ◽  
Beibei Su ◽  
...  

Abstract Background A large number of studies have shown that soybean grass with mixed seeding cultivation can significantly improve the yield and quality of forage grass compared with clean culture cultivation.This study explores the differences in the characteristics of the composition and diversity of the microbial community in the rhizosphere of soybean grasses between clean culture and mixed seeding methods in an alpine region. We used high-throughput sequencing technology to determine the microbial diversity and analytical methods to determine the physicochemical characteristics of plant rhizosphere soil of Avena sativa L. and Vicia sativa L. Results There were no significant differences in pH, total nitrogen, total phosphorus, and total potassium in the rhizosphere soil samples of soybean grasses under the clean culture and mixed seeding methods, while there were significant differences in the available nitrogen, available phosphorus, available potassium, and organic matter content (P < 0.05). The bacterial diversity of the rhizosphere soil of Avena sativa L. was the highest under the clean culture method, and the fungal diversity of the rhizosphere soil of Vicia sativa L. was the highest under the clean culture method. Furthermore, the microbial diversity of the rhizosphere was significantly different under the different cultivation methods (P < 0.05). The differences between the microbial species in the rhizosphere of the treated soil were at three class level. The abundance of Alphaproteobacteria and Actinobacteria in the rhizosphere of Avena sativa L. and Vicia sativa L. under the mixed seeding method was conspicuously higher than that of Avena sativa L. and Vicia sativa L. under the clean culture method, while the abundance of Gemmatimonadetes, Nitrospira, and Acidimicrobiia were significantly lower than that obtained under the clean culture method. Regarding fungal predominance, Mortierellomycetes was the most abundant (32.66%) under the mixed seeding method, while the abundance of Sordariomycetes and Leotiomycetes were significantly lower than that under clean culture. The distribution of bacterial and fungal community species in the rhizosphere differed significantly between the treatments. The Kyoto Encyclopedia of Genes and Genomes metabolism analysis showed that the metabolic pathways of functional genes in the soil microbial communities were similar. Conclusions Mixed sowing changed the diversity of plant rhizosphere microbial community structure and promoted plant yield.


Sign in / Sign up

Export Citation Format

Share Document