scholarly journals Microbial diversity in rhizosphere soil of soybean grass under different cultivation methods in an alpine region

2020 ◽  
Author(s):  
Ying Zhang ◽  
Wenhui Liu ◽  
Xilai Li ◽  
Zhiying Zhang ◽  
Beibei Su ◽  
...  

Abstract Background A large number of studies have shown that soybean grass with mixed seeding cultivation can significantly improve the yield and quality of forage grass compared with clean culture cultivation.This study explores the differences in the characteristics of the composition and diversity of the microbial community in the rhizosphere of soybean grasses between clean culture and mixed seeding methods in an alpine region. We used high-throughput sequencing technology to determine the microbial diversity and analytical methods to determine the physicochemical characteristics of plant rhizosphere soil of Avena sativa L. and Vicia sativa L. Results There were no significant differences in pH, total nitrogen, total phosphorus, and total potassium in the rhizosphere soil samples of soybean grasses under the clean culture and mixed seeding methods, while there were significant differences in the available nitrogen, available phosphorus, available potassium, and organic matter content (P < 0.05). The bacterial diversity of the rhizosphere soil of Avena sativa L. was the highest under the clean culture method, and the fungal diversity of the rhizosphere soil of Vicia sativa L. was the highest under the clean culture method. Furthermore, the microbial diversity of the rhizosphere was significantly different under the different cultivation methods (P < 0.05). The differences between the microbial species in the rhizosphere of the treated soil were at three class level. The abundance of Alphaproteobacteria and Actinobacteria in the rhizosphere of Avena sativa L. and Vicia sativa L. under the mixed seeding method was conspicuously higher than that of Avena sativa L. and Vicia sativa L. under the clean culture method, while the abundance of Gemmatimonadetes, Nitrospira, and Acidimicrobiia were significantly lower than that obtained under the clean culture method. Regarding fungal predominance, Mortierellomycetes was the most abundant (32.66%) under the mixed seeding method, while the abundance of Sordariomycetes and Leotiomycetes were significantly lower than that under clean culture. The distribution of bacterial and fungal community species in the rhizosphere differed significantly between the treatments. The Kyoto Encyclopedia of Genes and Genomes metabolism analysis showed that the metabolic pathways of functional genes in the soil microbial communities were similar. Conclusions Mixed sowing changed the diversity of plant rhizosphere microbial community structure and promoted plant yield.

el–Hayah ◽  
2012 ◽  
Vol 1 (4) ◽  
Author(s):  
Prihastuti Prihastuti

<p>Soils are made up of organic and an organic material. The organic soil component contains all the living creatures in the soil and the dead ones in various stages of decomposition.  Biological activity in soil helps to recycle nutrients, decompose organic matter making nutrient available for plant uptake, stabilize humus, and form soil particles.<br />The extent of the diversity of microbial in soil is seen to be critical to the maintenance of soil health and quality, as a wide range of microbial is involved in important soil functions.  That ecologically managed soils have a greater quantity and diversity of soil microbial. The two main drivers of soil microbial community structure, i.e., plant type and soil type, are thought to exert their function in a complex manner. The fact that in some situations the soil and in others the plant type is the key factor determining soil microbial diversity is related to their complexity of the microbial interactions in soil, including interactions between microbial and soil and microbial and plants. <br />The basic premise of organic soil stewardship is that all plant nutrients are present in the soil by maintaining a biologically active soil environment. The diversity of microbial communities has on ecological function and resilience to disturbances in soil ecosystems. Relationships are often observed between the extent of microbial diversity in soil, soil and plant quality and ecosystem sustainability. Agricultural management can be directed toward maximizing the quality of the soil microbial community in terms of disease suppression, if it is possible to shift soil microbial communities.</p><p>Keywords: structure, microbial, implication, sustainable agriculture<br /><br /></p>


2020 ◽  
Vol 66 (4) ◽  
pp. 263-273
Author(s):  
Julien Saavedra-Lavoie ◽  
Anne de la Porte ◽  
Sarah Piché-Choquette ◽  
Claude Guertin ◽  
Philippe Constant

Trace gas uptake by microorganisms controls the oxidative capacity of the troposphere, but little is known about how this important function is affected by changes in soil microbial diversity. This article bridges that knowledge gap by examining the response of the microbial community-level physiological profiles (CLPPs), carbon dioxide (CO2) production, and molecular hydrogen (H2) and carbon monoxide (CO) oxidation activities to manipulation of microbial diversity in soil microcosms. Microbial diversity was manipulated by mixing nonsterile and sterile soil with and without the addition of antibiotics. Nonsterile soil without antibiotics was used as a reference. Species composition changed significantly in soil microcosms as a result of dilution and antibiotic treatments, but there was no difference in species richness, according to PCR amplicon sequencing of the bacterial 16S rRNA gene. The CLPP was 15% higher in all dilution and antibiotic treatments than in reference microcosms, but the dilution treatment had no effect on CO2 production. Soil microcosms with dilution treatments had 58%–98% less H2 oxidation and 54%–99% lower CO oxidation, relative to reference microcosms, but did not differ among the antibiotic treatments. These results indicate that H2 and CO oxidation activities respond to compositional changes of microbial community in soil.


2020 ◽  
Author(s):  
Haiying Lei ◽  
Ake Liu ◽  
Qinwen Hou ◽  
Qingsong Zhao ◽  
Jia Guo ◽  
...  

Abstract Background: Continuous monocropping can affect the physicochemical and biological characteristics of cultivated soil. Sophora flavescens is a valuable herbal medicine and sensitive to continuous monocropping. Currently, diversity patterns of soil microbial communities in soil continuous monocropping with S. flavescens have not been extensively elucidated.Results: In this study, comparative 16S rDNA and internal transcribed spacer (ITS) MiSeq sequencing analyses were used to examine the taxonomic community structure and microbial diversity in nonrhizosphere soil (CK) and rhizosphere soils (SCC, TCC, and FCC) sampled from fields that had undergone two, three, and five years of continuous monocropping, respectively. Among the microbial communities, a decreased abundance of Acidobacteria and increased abundances of Proteobacteria and Bacteroidetes were found with the increase in monocropping years of S. flavescens. As the continuous monocropping time increased, the diversity of the bacterial community decreased, but that of fungi increased. Redundancy analysis also showed that among the properties of the rhizosphere soil, the available phosphorus, organic matter, total nitrogen, and sucrase had the greatest impacts on the diversity of the rhizosphere microbial community. Moreover, a biomarker for S. flavescens soil was also identified using the most differentially abundant bacteria and fungi in soil samples.Conclusions: Our study indicates that long-term monocropping exerted great impacts on microbial community distributions and soil physicochemical properties. The relationship between microbial community and physicochemical properties of rhizosphere soil would help clarify the side effects of continuous S. flavescens monocropping. Our study may aid in uncovering the theoretical basis underlying obstacles to continuous monocropping and provide better guidance for crop production.


Forests ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 951
Author(s):  
Liguo Song ◽  
Lingyu Hou ◽  
Yongqiang Zhang ◽  
Zhichao Li ◽  
Wenzheng Wang ◽  
...  

Biochar is a promising material for the improvement of soil quality. However, studies on biochar have mostly been carried out in laboratory conditions or have focused on agricultural aspects. The impacts of the application of biochar on soil characteristics and related ecological processes of the forest ecosystem have not been fully resolved. In this study, we investigated the effects of regular biochar and bacteria-loaded biochar on the microbial communities in the bulk soil and the rhizosphere soil of an annual Chinese fir plantation. In early spring (April), the two types of biochar were added to the soil at the rates of 2.22 t·ha−1, 4.44 t·ha−1, 6.67 t·ha−1, 8.89 t·ha−1, and 11.11 t·ha−1 by ring furrow application around the seedlings, and soil samples were collected at the end of autumn (November). The results showed that biochar addition increased the soil nutrient content and promoted the growth and diversity of soil microbial communities. The diversity of soil fungi was significantly increased, and the diversity of soil bacteria was significantly decreased. Principal component analysis under the different biochar types and application rates demonstrated that microbial communities differed significantly between the treatments and controls and that the effect of biochar on the microbial community of the bulk soil was more significant than that of the rhizosphere soil. Under the same dosage, the effect of bacteria-loaded biochar on soil was more significant than that of regular biochar.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ai-Zi Tong ◽  
Wei Liu ◽  
Qiang Liu ◽  
Guang-Qing Xia ◽  
Jun-Yi Zhu

Abstract Background Continuous cropping of ginseng (Panax ginseng Meyer) cultivated in farmland for an extended period gives rise to soil-borne disease. The change in soil microbial composition is a major cause of soil-borne diseases and an obstacle to continuous cropping. The impact of cultivation modes and ages on the diversity and composition of the P. ginseng rhizosphere microbial community and technology suitable for cropping P. ginseng in farmland are still being explored. Methods Amplicon sequencing of bacterial 16S rRNA genes and fungal ITS regions were analyzed for microbial community composition and diversity. Results The obtained sequencing data were reasonable for estimating soil microbial diversity. We observed significant variations in richness, diversity, and relative abundances of microbial taxa between farmland, deforestation field, and different cultivation years. The bacterial communities of LCK (forest soil where P. ginseng was not grown) had a much higher richness and diversity than those in NCK (farmland soil where P. ginseng was not grown). The increase in cultivation years of P. ginseng in farmland and deforestation field significantly changed the diversity of soil microbial communities. In addition, the accumulation of P. ginseng soil-borne pathogens (Monographella cucumerina, Ilyonectria mors-panacis, I. robusta, Fusarium solani, and Nectria ramulariae) varied with the cropping age of P. ginseng. Conclusion Soil microbial diversity and function were significantly poorer in farmland than in the deforestation field and were affected by P. ginseng planting years. The abundance of common soil-borne pathogens of P. ginseng increased with the cultivation age and led to an imbalance in the microbial community.


2021 ◽  
Author(s):  
Yi Zhang ◽  
Ying-Zhong Xie ◽  
Hong-Bin Ma ◽  
Juan Zhang ◽  
Le Jing ◽  
...  

Abstract Background: The study evaluates how rainfall change and temperature increase affect microbial communities in the desert grassland of Ningxia Autonomous Region, China to explore the soil microbial community and the relationships among the soil microbial community, chemical properties, soil respiration (SR) and plant biomass under the climate change. We established the field experiment with five levels of rainfall by rainout shelters and two levels of temperature by Open-Top Chamber (OTC). Results: The effect of temperature to soil microbial communities is not significant, but with the continuous increase of rainfall, the microbial community gradually increases. Soil microbial diversity negatively correlated with soil CO2 flux. The α-diversity of microbial communities positively correlated with above-living biomass (ALB) and soil temperature (ST), but negatively correlated with root biomass (RB). Conclusions: Both rainfall and temperature’s rising do not promote the soil community α-diversity, but it can promote soil microbial community β-diversity. Soil microbial communities show resistance to rainfall changing. Soil respiration (SR) will limit soil microbial diversity. Soil organic carbon (SOC), soil total nitrogen (STN), and soil total phosphorus (STP) will promote soil microbial abundance and diversity. ALB and ST will promote the soil α-diversity, but the effect of RB to soil microbial is opposite. These findings maybe provide a reliable theoretical basis for formulating a reasonable response strategy in desert steppe ecosystems.


Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1294
Author(s):  
Ning Wang ◽  
Qi Li ◽  
Mengqi Jiang ◽  
Weizhen Zhang ◽  
Hao Zhang ◽  
...  

This study investigated the effects of the mud-sinking (MS) method, agar gel-sinking (AS) method and agar gel-sinking with artificial aquatic mat (ASA) method on the growth, physiological characteristics, water purification capacity, and associated microbial community of the different organs of Vallisneria natans (V. natans). Results showed that the growth of agar-based growth (group AS and ASA) were more effective than the mud-wrapped method (group MS), exhibiting longer length, higher fresh weight and biomass of agar-based V. natans with the artificial aquatic mat (group ASA) being higher than those of other groups. MS caused a stress response in the oxidative system, which then inhibited photosynthesis. Results of water quality measurements showed that the three planting methods positively affected water purification without significant differences (p > 0.05). Besides, there was no significant difference (p > 0.05) between the microbial communities in terms of the roots and those found in rhizosphere soils in the MS group with high throughput sequencing. Meanwhile, the addition of agar in the AS and ASA groups increased the diversity of rhizosphere soil microbial communities and reduced the diversity of root microbial communities. Microbial community compositions in the rhizosphere soil and root differed significantly (p < 0.05). High throughput sequencing and scanning electron microscopy (SEM) also revealed that the biofilm on the surfaces were different, with Proteobacteria and Cyanophyta consistently dominating. This study provides new insights on the more effective revegetation methods of V. natans, researched the environmental impact of the addition of agar, and provides some theoretical support for the revegetation of submerged macrophytes under ecological restoration.


2021 ◽  
Author(s):  
Liuting Zhou ◽  
Jianjuan Li ◽  
Chen Zhang ◽  
Xinlai Guo ◽  
Wei Chu ◽  
...  

Abstract The aim of this study was to explore the soil microbial variability within different forest ecosystems (evergreen broad-leaf forest (EBF), coniferous forest (CF), subalpine dwarf forest (SDF) and alpine meadow (AM) at different altitudes in mid-subtropics of China. The phospholipid fatty acid (PLFA) method was used to analyze the microbial communities in rhizosphere soil under different forest types. The relationships were also analyzed between the microbial diversity and soil nutrients. A total of 27 PLFA biomarkers were detected and the PLFA concentrations decreased in the sequence of bacteria > fungus > actinomycete > protozoa in all forest types. The microbial communities in the soil under all forest types were distinct. The predominant microflora in all soils were 18:1ω9c, 16:1ω7c, cy19:0, a17:0 and 18:0. The indexes of Simpson, Shannon-Wiener and Brillouin of soil microbial community diversity in these four forest types all showed a trend of EBF > CF > SDF > AM. According to principal component analyses (PCA), the variable variances of principal components 1 and 2, which were related to the PLFA biomarkers of soil microorganisms, were 67.67% and 17.91%, respectively. Furthermore, the total PLFAs of different soil microbial groups showed a correlation with soil nutrients and enzyme activities in all forest types. The soil microbial diversity gradually decreased in the order of EBF > CF > SDF > AM in the Daiyun Mountains. Different vegetation types affect soil microbial community composition and diversity by changing the soil physicochemical properties and enzyme activity.


2020 ◽  
Author(s):  
Haiying Lei ◽  
Ake Liu ◽  
Qingsong Zhao ◽  
Qinwen Hou ◽  
Jia Guo ◽  
...  

Abstract Background: Continuous monocropping can affect the physicochemical and biological characteristics of cultivated soil. Sophora flavescens is a valuable herbal medicine and sensitive to continuous monocropping. Currently, diversity patterns of soil microbial communities in soil continuous monocropping with S. flavescens have not been extensively elucidated. Results: In this study, comparative 16S rDNA and internal transcribed spacer (ITS) MiSeq sequencing analyses were used to examine the taxonomic community structure and microbial diversity in nonrhizosphere soil (CK) and rhizosphere soils (SCC, TCC, and FCC) sampled from fields that had undergone two, three, and five years of continuous monocropping, respectively. Among the microbial communities, a decreased abundance of Acidobacteria and increased abundances of Proteobacteria and Bacteroidetes were found with the increase in monocropping years of S. flavescens . As the continuous monocropping time increased, the diversity of the bacterial community decreased, but that of fungi increased. Redundancy analysis also showed that among the properties of the rhizosphere soil, the available phosphorus, organic matter, total nitrogen, and sucrase had the greatest impacts on the diversity of the rhizosphere microbial community. Moreover, a biomarker for S. flavescens soil was also identified using the most differentially abundant bacteria and fungi in soil samples. Conclusions: Our study indicates that long-term monocropping exerted great impacts on microbial community distributions and soil physicochemical properties. The relationship between microbial community and physicochemical properties of rhizosphere soil would help clarify the side effects of continuous S. flavescens monocropping. Our study may aid in uncovering the theoretical basis underlying obstacles to continuous monocropping and provide better guidance for crop production.


2020 ◽  
Author(s):  
Haiying Lei ◽  
Qinwen Hou ◽  
Qingsong Zhao ◽  
Jia Guo ◽  
Zhijun Wang ◽  
...  

Abstract Background : Deterioration in soil continuously cropped with Sophora flavescens (a traditional Chinese herb sensitive to continuous monocropping systems) has not been elucidated, especially regarding taxa present in the microbial community and soil properties. Results : In this study, comparative 16S rRNA and internal transcribed spacer (ITS) MiSeq sequencing analyses were used to examine the taxonomic community structure and microbial diversity in nonrhizosphere soil (CK) and rhizosphere soils (SCC, TCC, and FCC) sampled from fields that had undergone two, three and five years of continuous cropping, respectively. Acidobacteria and Proteobacteria were the most enriched phyla in the bacterial communities, and Ascomycota and Mortierellomycota were the dominant phyla of fungal communities in soil continuously cropped for different periods of time. As the continuous cropping time increased, the diversity of the bacterial community decreased, but that of fungi increased, indicating that long-term monocropping exerted great impacts on microbial community distributions. Redundancy analysis also showed that among the properties of the rhizosphere soil, the available phosphorus, organic matter, total nitrogen and sucrase had the greatest impacts on the diversity of the rhizosphere microbial community. Moreover, a biomarker for S. flavescens soil was also identified using the most differentially abundant bacteria and fungi in soil samples.Conclusions : Overall, investigating the microbial community and physicochemical properties of rhizosphere soil will help clarify the relationship between continuous cropping with S. flavescens and soil degradation. Our study may aid in uncovering the theoretical basis underlying obstacles to continuous cropping and provide better guidance for crop production.


Sign in / Sign up

Export Citation Format

Share Document