scholarly journals QTL mapping and candidate genes for resistance to Fusarium ear rot and fumonisin contamination in maize

2017 ◽  
Vol 17 (1) ◽  
Author(s):  
Valentina Maschietto ◽  
Cinzia Colombi ◽  
Raul Pirona ◽  
Giorgio Pea ◽  
Francesco Strozzi ◽  
...  
2016 ◽  
Vol 6 (12) ◽  
pp. 3803-3815 ◽  
Author(s):  
Jiafa Chen ◽  
Rosemary Shrestha ◽  
Junqiang Ding ◽  
Hongjian Zheng ◽  
Chunhua Mu ◽  
...  

Abstract Fusarium ear rot (FER) incited by Fusarium verticillioides is a major disease of maize that reduces grain quality globally. Host resistance is the most suitable strategy for managing the disease. We report the results of genome-wide association study (GWAS) to detect alleles associated with increased resistance to FER in a set of 818 tropical maize inbred lines evaluated in three environments. Association tests performed using 43,424 single-nucleotide polymorphic (SNPs) markers identified 45 SNPs and 15 haplotypes that were significantly associated with FER resistance. Each associated SNP locus had relatively small additive effects on disease resistance and accounted for 1–4% of trait variation. These SNPs and haplotypes were located within or adjacent to 38 candidate genes, 21 of which were candidate genes associated with plant tolerance to stresses, including disease resistance. Linkage mapping in four biparental populations to validate GWAS results identified 15 quantitative trait loci (QTL) associated with F. verticillioides resistance. Integration of GWAS and QTL to the maize physical map showed eight colocated loci on chromosomes 2, 3, 4, 5, 9, and 10. QTL on chromosomes 2 and 9 are new. These results reveal that FER resistance is a complex trait that is conditioned by multiple genes with minor effects. The value of selection on identified markers for improving FER resistance is limited; rather, selection to combine small effect resistance alleles combined with genomic selection for polygenic background for both the target and general adaptation traits might be fruitful for increasing FER resistance in maize.


Crop Science ◽  
2006 ◽  
Vol 46 (4) ◽  
pp. 1734-1743 ◽  
Author(s):  
Leilani A. Robertson‐Hoyt ◽  
Michael P. Jines ◽  
Peter J. Balint‐Kurti ◽  
Craig E. Kleinschmidt ◽  
Don G. White ◽  
...  

Plant Disease ◽  
2020 ◽  
Author(s):  
Jing Wen ◽  
Yanqi Shen ◽  
Yuexian Xing ◽  
Ziyu Wang ◽  
Siping Han ◽  
...  

Ear rot is a globally prevalent class of disease in maize, of which Fusarium ear rot (FER) caused by the fungal pathogen Fusarium verticilloides, is the most commonly reported. In this study, three F2 populations, namely F2-C, F2-D and F2-J, and their corresponding F2:3 families were produced by crossing three highly FER-resistant inbred lines, Cheng351, Dan598, and JiV203 with the same susceptible line, ZW18, for quantitative trait locus (QTL) mapping of FER-resistance. The individual crop plants were inoculated by injecting spore suspension of the pathogen into the kernels of the maize ears. The broad-sense heritability (H2) for FER-resistance was estimated to be as high as 0.76, 0.81, and 0.78 in F2-C, F2-D and F2-J, respectively, indicating that genetic factors played a key role in the phenotypic variation. We detected a total of 20 FER-resistant QTLs in the three F2 populations, among which QTLs derived from the resistant parent Cheng351, Dan598 and JiV203 explained 62.89 to 82.25%, 43.19 to 61.51% and 54.70 to 75.77% of the phenotypic variation, respectively. Among all FER-resistant QTLs detected, qRfer1, qRfer10, and qRfer17 accounted for the phenotypic variation as high as 26.58 to 43.36%, 11.76 to 18.02%, and 12.02 to 21.81%, respectively. Furthermore, QTLs mapped in different F2 populations showed some extent of overlaps indicating potential resistance ‘hotspots’. The FER-resistant QTLs detected in this study can be explored as useful candidates to improve FER-resistance in maize by introducing these QTLs into susceptible maize inbred lines using molecular marker-assisted selection.


2008 ◽  
Vol 22 (3) ◽  
pp. 395-403 ◽  
Author(s):  
Jun-Qiang Ding ◽  
Xiao-Ming Wang ◽  
Subhash Chander ◽  
Jian-Bing Yan ◽  
Jian-Sheng Li

2016 ◽  
Vol 7 ◽  
Author(s):  
Danna Liang ◽  
Minyang Chen ◽  
Xiaohua Qi ◽  
Qiang Xu ◽  
Fucai Zhou ◽  
...  

Author(s):  
Laura ȘOPTEREAN ◽  
Loredana SUCIU ◽  
Ana Maria VĂLEAN ◽  
Felicia MUREŞANU ◽  
Carmen PUIA

The most important disease of maize in Romania are stalk and ear rot, which caused yield losses in average of 20%. The resistant hibrids represent one of the most efficient solution for reducing the field loses caused by Fusarium spp. on the maize (Nagy et al., 2006). Diseases caused by Fusarium spp. can affect the yield and grain quality of maize because of contamination with numerous mycotoxins produced by these fungi (Czembor et al., 2015). The purpose of this paper was to know more about the reaction of different maize hybrids to Fusarium and the evaluating the effect of ear rot on the yield ability and mycotoxins accumulation. The experiments carried out at ARDS Turda, during four years (2012-2015). The biological material was represented by 8 hybrids, from different maturity groups, tested in two infection conditions with Fusarium spp. (natural and artificial infections). The temperature and rainfalls of the four years of experiments corresponding to the vegetation of maize (april-september) are influenced favourably the pathogenesis of stalk and ear rot caused by Fusarium spp. and a good discrimination of the resistance reaction of genotypes. Fusarium ear rot has significantly affected production capacity and chemical composition of corn hybrids tested. In conditions of artificial infection with Fusarium spp. was a decrease in the content of starch, fat and increased protein content compared with artificially inoculated variants. The quantity of fumonizin B1+B2 has reached to 5630 μg/kg in conditions of artificial infection. There are negative correlations between production capacity and degree of attack of fusarium ear rot; depending on the reacting genotypes tested increasing disease causes production decrease. The response of maize hybrids to Fusarium infection is influenced by infection and climatic conditions. These factors affect production both in terms of quantity and quality and accumulation of mycotoxins.


Sign in / Sign up

Export Citation Format

Share Document