scholarly journals Genomic imprinted genes in reciprocal hybrid endosperm of Brassica napus

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Hao Rong ◽  
Wenjing Yang ◽  
Haotian Zhu ◽  
Bo Jiang ◽  
Jinjin Jiang ◽  
...  

Abstract Background Genomic imprinting results in the expression of parent-of-origin-specific alleles in the offspring. Brassica napus is an oil crop with research values in polyploidization. Identification of imprinted genes in B. napus will enrich the knowledge of genomic imprinting in dicotyledon plants. Results In this study, we performed reciprocal crosses between B. napus L. cultivars Yangyou 6 (Y6) and Zhongshuang 11 (ZS11) to collect endosperm at 20 and 25 days after pollination (DAP) for RNA-seq. In total, we identified 297 imprinted genes, including 283 maternal expressed genes (MEGs) and 14 paternal expressed genes (PEGs) according to the SNPs between Y6 and ZS11. Only 36 genes (35 MEGs and 1 PEG) were continuously imprinted in 20 and 25 DAP endosperm. We found 15, 2, 5, 3, 10, and 25 imprinted genes in this study were also imprinted in Arabidopsis, rice, castor bean, maize, B. rapa, and other B. napus lines, respectively. Only 26 imprinted genes were specifically expressed in endosperm, while other genes were also expressed in root, stem, leaf and flower bud of B. napus. A total of 109 imprinted genes were clustered on rapeseed chromosomes. We found the LTR/Copia transposable elements (TEs) were most enriched in both upstream and downstream of the imprinted genes, and the TEs enriched around imprinted genes were more than non-imprinted genes. Moreover, the expression of 5 AGLs and 6 pectin-related genes in hybrid endosperm were significantly changed comparing with that in parent endosperm. Conclusion This research provided a comprehensive identification of imprinted genes in B. napus, and enriched the gene imprinting in dicotyledon plants, which would be useful in further researches on how gene imprinting regulates seed development.

2009 ◽  
Vol 30 (2) ◽  
pp. 119-124 ◽  
Author(s):  
Erin N. McMurray ◽  
Eric D. Rogers ◽  
Jennifer V. Schmidt

The insertional mouse mutation Adp (Acrodysplasia) confers a parent-of-origin developmental phenotype, with animals inheriting the mutation from their father showing skeletal abnormalities, whereas those inheriting the mutation from their mother are normal. This parental-specific phenotype, along with mapping of the insertion to a region of chromosome 12 proposed to contain imprinted genes, suggested that disruption of genomic imprinting might underlie the Adp phenotype. Genomic imprinting is the process by which autosomal genes are epigenetically silenced on one of the two parental alleles; imprinting mutation phenotypes manifest after inheritance from one parent but not the other. Imprinted genes typically occur in dense clusters that contain few non-imprinted genes and therefore representative genes from the Adp critical region could be assayed to identify any imprinted domains. None of the genes analysed were found to be imprinted, however, suggesting that other explanations for the Adp phenotype must be considered.


2017 ◽  
Vol 7 (7) ◽  
pp. 2227-2234 ◽  
Author(s):  
Yasuaki Takada ◽  
Ryutaro Miyagi ◽  
Aya Takahashi ◽  
Toshinori Endo ◽  
Naoki Osada

Abstract Joint quantification of genetic and epigenetic effects on gene expression is important for understanding the establishment of complex gene regulation systems in living organisms. In particular, genomic imprinting and maternal effects play important roles in the developmental process of mammals and flowering plants. However, the influence of these effects on gene expression are difficult to quantify because they act simultaneously with cis-regulatory mutations. Here we propose a simple method to decompose cis-regulatory (i.e., allelic genotype), genomic imprinting [i.e., parent-of-origin (PO)], and maternal [i.e., maternal genotype (MG)] effects on allele-specific gene expression using RNA-seq data obtained from reciprocal crosses. We evaluated the efficiency of method using a simulated dataset and applied the method to whole-body Drosophila and mouse trophoblast stem cell (TSC) and liver RNA-seq data. Consistent with previous studies, we found little evidence of PO and MG effects in adult Drosophila samples. In contrast, we identified dozens and hundreds of mouse genes with significant PO and MG effects, respectively. Interestingly, a similar number of genes with significant PO effect were detect in mouse TSCs and livers, whereas more genes with significant MG effect were observed in livers. Further application of this method will clarify how these three effects influence gene expression levels in different tissues and developmental stages, and provide novel insight into the evolution of gene expression regulation.


Author(s):  
Hisato Kobayashi

Genomic imprinting is an epigenetic phenomenon that results in unequal expression of homologous maternal and paternal alleles. This process is initiated in the germline, and the parental epigenetic memories can be maintained following fertilization and induce further allele-specific transcription and chromatin modifications of single or multiple neighboring genes, known as imprinted genes. To date, more than 260 imprinted genes have been identified in the mouse genome, most of which are controlled by imprinted germline differentially methylated regions (gDMRs) that exhibit parent-of-origin specific DNA methylation, which is considered primary imprint. Recent studies provide evidence that a subset of gDMR-less, placenta-specific imprinted genes is controlled by maternal-derived histone modifications. To further understand DNA methylation-dependent (canonical) and -independent (non-canonical) imprints, this review summarizes the loci under the control of each type of imprinting in the mouse and compares them with the respective homologs in other rodents. Understanding epigenetic systems that differ among loci or species may provide new models for exploring genetic regulation and evolutionary divergence.


2021 ◽  
Vol 118 (29) ◽  
pp. e2104445118
Author(s):  
Jessica A. Rodrigues ◽  
Ping-Hung Hsieh ◽  
Deling Ruan ◽  
Toshiro Nishimura ◽  
Manoj K. Sharma ◽  
...  

Parent-of-origin–dependent gene expression in mammals and flowering plants results from differing chromatin imprints (genomic imprinting) between maternally and paternally inherited alleles. Imprinted gene expression in the endosperm of seeds is associated with localized hypomethylation of maternally but not paternally inherited DNA, with certain small RNAs also displaying parent-of-origin–specific expression. To understand the evolution of imprinting mechanisms in Oryza sativa (rice), we analyzed imprinting divergence among four cultivars that span both japonica and indica subspecies: Nipponbare, Kitaake, 93-11, and IR64. Most imprinted genes are imprinted across cultivars and enriched for functions in chromatin and transcriptional regulation, development, and signaling. However, 4 to 11% of imprinted genes display divergent imprinting. Analyses of DNA methylation and small RNAs revealed that endosperm-specific 24-nt small RNA–producing loci show weak RNA-directed DNA methylation, frequently overlap genes, and are imprinted four times more often than genes. However, imprinting divergence most often correlated with local DNA methylation epimutations (9 of 17 assessable loci), which were largely stable within subspecies. Small insertion/deletion events and transposable element insertions accompanied 4 of the 9 locally epimutated loci and associated with imprinting divergence at another 4 of the remaining 8 loci. Correlating epigenetic and genetic variation occurred at key regulatory regions—the promoter and transcription start site of maternally biased genes, and the promoter and gene body of paternally biased genes. Our results reinforce models for the role of maternal-specific DNA hypomethylation in imprinting of both maternally and paternally biased genes, and highlight the role of transposition and epimutation in rice imprinting evolution.


Genes ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 380
Author(s):  
Yaping Liu ◽  
Xiaotong Jing ◽  
Hong Zhang ◽  
Jinsong Xiong ◽  
Yushan Qiao

Genomic imprinting has drawn increasing attention in plant biology in recent years. At present, hundreds of imprinted genes have been identified in various plants, and some of them have been reported to be evolutionarily conserved in plant species. In this research, 17 candidate genes in Fragaria vesca were obtained based on the homologous imprinted genes in Arabidopsis thaliana and other species. We further constructed reciprocal crosses of diploid strawberry (F. vesca) using the varieties 10-41 and 18-86 as the parents to investigate the conservation of these imprinted genes. Potentially informative single nucleotide polymorphisms (SNPs) were used as molecular markers of two parents obtained from candidate imprinted genes which have been cloned and sequenced. Meanwhile, we analyzed the SNP site variation ratios and parent-of-origin expression patterns of candidate imprinted genes at 10 days after pollination (DAP) endosperm and embryo for the hybrids of reciprocal cross, respectively. A total of five maternally expressed genes (MEGs), i.e., FvARI8, FvKHDP-2, FvDRIP2, FvBRO1, and FvLTP3, were identified in the endosperm, which did not show imprinting in the embryo. Finally, tissues expression analysis indicated that the five imprinted genes excluding FvDRIP2 mainly expressed in the endosperm. This is the first report on imprinted genes of Fragaria, and we provide a simple and rapid method based on homologous conservation to screen imprinted genes. The present study will provide a basis for further study of function and mechanism of genomic imprinting in F. vesca.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Iromi Wanigasuriya ◽  
Quentin Gouil ◽  
Sarah A Kinkel ◽  
Andrés Tapia del Fierro ◽  
Tamara Beck ◽  
...  

Genomic imprinting establishes parental allele-biased expression of a suite of mammalian genes based on parent-of-origin specific epigenetic marks. These marks are under the control of maternal effect proteins supplied in the oocyte. Here we report epigenetic repressor Smchd1 as a novel maternal effect gene that regulates the imprinted expression of ten genes in mice. We also found zygotic SMCHD1 had a dose-dependent effect on the imprinted expression of seven genes. Together, zygotic and maternal SMCHD1 regulate three classic imprinted clusters and eight other genes, including non-canonical imprinted genes. Interestingly, the loss of maternal SMCHD1 does not alter germline DNA methylation imprints pre-implantation or later in gestation. Instead, what appears to unite most imprinted genes sensitive to SMCHD1 is their reliance on polycomb-mediated methylation as germline or secondary imprints, therefore we propose that SMCHD1 acts downstream of polycomb imprints to mediate its function.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Philip Wolff ◽  
Hua Jiang ◽  
Guifeng Wang ◽  
Juan Santos-González ◽  
Claudia Köhler

Genomic imprinting is an epigenetic phenomenon causing parent-of-origin specific differential expression of maternally and paternally inherited alleles. While many imprinted genes have been identified in plants, the functional roles of most of them are unknown. In this study, we systematically examine the functional requirement of paternally expressed imprinted genes (PEGs) during seed development in Arabidopsis thaliana. While none of the 15 analyzed peg mutants has qualitative or quantitative abnormalities of seed development, we identify three PEGs that establish postzygotic hybridization barriers in the endosperm, revealing that PEGs have a major role as speciation genes in plants. Our work reveals that a subset of PEGs maintains functional roles in the inbreeding plant Arabidopsis that become evident upon deregulated expression.


2018 ◽  
Author(s):  
Sahar V. Mozaffari ◽  
Michelle M. Stein ◽  
Kevin M. Magnaye ◽  
Dan L. Nicolae ◽  
Carole Ober

AbstractGenomic imprinting is the phenomena that leads to silencing of one copy of a gene inherited from a specific parent. Mutations in imprinted regions have been involved in diseases showing parent of origin effects. Identifying genes with evidence of parent of origin expression patterns in family studies allows the detection of more subtle imprinting. Here, we use allele specific expression in lymphoblastoid cell lines from 306 Hutterites related in a single pedigree to provide formal evidence for parent of origin effects. We take advantage of phased genotype data to assign parent of origin to RNA-seq reads in individuals with gene expression data. Our approach identified known imprinted genes, two putative novel imprinted genes, and 14 genes with asymmetrical parent of origin gene expression. We used gene expression in peripheral blood leukocytes (PBL) to validate our findings, and then confirmed imprinting control regions (ICRs) using DNA methylation levels in the PBLs.Author SummaryLarge scale gene expression studies have identified known and novel imprinted genes through allele specific expression without knowing the parental origins of each allele. Here, we take advantage of phased genotype data to assign parent of origin to RNA-seq reads in 306 individuals with gene expression data. We identified known imprinted genes as well as two novel imprinted genes in lymphoblastoid cell line gene expression. We used gene expression in PBLs to validate our findings, and DNA methylation levels in PBLs to confirm previously characterized imprinting control regions that could regulate these imprinted genes.


2019 ◽  
Author(s):  
Shirong Deng ◽  
Feifei Xiao

AbstractIn the past few years extensive studies have been put on the analysis of genome function, especially on expression quantitative trait loci (eQTL) which offered promise for characterization of the functional sequencing variation and for the understanding of the basic processes of gene regulation. However, most studies of eQTL mapping have not implemented models that allow for the non-equivalence of parental alleles as so-called parent-of-origin effects (POEs); thus, the number and effects of imprinted genes remain important open questions. Imprinting is a type of POE that the expression of certain genes depends on their allelic parent-of-origin which are important contributors to phenotypic variations, such as diabetes and many cancer types. Besides, multi-collinearity is an important issue arising from modeling multiple genetic effects. To address these challenges, we proposed a statistical framework to test the main allelic effects of the candidate eQTLs along with the POE with an orthogonal model for RNA sequencing (RNA-seq) data. Using simulations, we demonstrated the desirable power and Type I error of the orthogonal model which also achieved accurate estimation of the genetic effects and over-dispersion of the RNA-seq data. These methods were applied to an existing HapMap project trio dataset to validate the reported imprinted genes and to discovery novel imprinted genes. Using the orthogonal method, we validated existing imprinting genes and discovered two novel imprinting genes with significant dominance effect.Author SummaryIn the past decades, an unprecedented wealth of knowledge has been accumulated for understanding variations in human DNA level. However, this DNA-level knowledge has not been sufficiently translated to understanding the mechanisms of human diseases. Gene expression quantitative trait locus (eQTL) mapping is one of the most promising approaches to fill this gap, which aims to explore the genetic basis of gene expression. Genomic imprinting is an important epigenetic phenomenon which is an important contributor to phenotypic variation in human complex diseases and may explain some of the “hidden” heritable variability. Many imprinting genes are known to play important roles in human complex diseases such as diabetes, breast cancer and obesity. However, traditional eQTL mapping approaches does not allow for the detection of imprinting which is usually involved in gene expression imbalance. In this study, we have for the first time demonstrated the orthogonal statistical model can be applied to eQTL mapping for RNA sequencing (RNA-seq) data. We showed by simulated and real data that the orthogonal model outperformed the usual functional model for detecting main effects in most cases, which addressed the issue of confounding between the dominance and additive effects. Application of the statistical model to the HapMap data resulted in discovery of some potential eQTLs with imprinting effects and dominance effects on expression of RB1 and IGF1R genes.In summary, we developed a comprehensive framework for modeling imprinting effect for eQTL mapping, by decomposing the effects to multiple genetic components. This study is providing new insights into statistical modeling of eQTL mapping with RNA-seq data which allows for uncorrelated parameter estimation of genetic effects, covariates and over-dispersion parameter.


Sign in / Sign up

Export Citation Format

Share Document