scholarly journals MicroRNA-1275 inhibits cell migration and invasion in gastric cancer by regulating vimentin and E-cadherin via JAZF1

BMC Cancer ◽  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Jia-Wei Mei ◽  
Zi-Yi Yang ◽  
Hong-Gang Xiang ◽  
Runfa Bao ◽  
Yuan-Yuan Ye ◽  
...  
Tumor Biology ◽  
2017 ◽  
Vol 39 (4) ◽  
pp. 101042831769755 ◽  
Author(s):  
Hong-Fang Chen ◽  
Ran-Ran Ma ◽  
Jun-Yi He ◽  
Hui Zhang ◽  
Xiao-Ling Liu ◽  
...  

2021 ◽  
pp. 096032712110061
Author(s):  
D Cao ◽  
L Chu ◽  
Z Xu ◽  
J Gong ◽  
R Deng ◽  
...  

Background: Visfatin acts as an oncogenic factor in numerous tumors through a variety of cellular processes. Visfatin has been revealed to promote cell migration and invasion in gastric cancer (GC). Snai1 is a well-known regulator of EMT process in cancers. However, the relationship between visfatin and snai1 in GC remains unclear. The current study aimed to explore the role of visfatin in GC. Methods: The RT-qPCR and western blot analysis were used to measure RNA and protein levels, respectively. The cell migration and invasion were tested by Trans-well assays and western blot analysis. Results: Visfatin showed upregulation in GC cells. Additionally, Visfatin with increasing concentration facilitated epithelial-mesenchymal transition (EMT) process by increasing E-cadherin and reducing N-cadherin and Vimentin protein levels in GC cells. Moreover, endogenous overexpression and knockdown of visfatin promoted and inhibited migratory and invasive abilities of GC cells, respectively. Then, we found that snai1 protein level was positively regulated by visfatin in GC cells. In addition, visfatin activated the NF-κB signaling to modulate snai1 protein expression. Furthermore, the silencing of snai1 counteracted the promotive impact of visfatin on cell migration, invasion and EMT process in GC. Conclusion: Visfatin facilitates cell migration, invasion and EMT process by targeting snai1 via the NF-κB signaling, which provides a potential insight for the treatment of GC.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Dandan Chai ◽  
Huifen Du ◽  
Kesheng Li ◽  
Xueliang Zhang ◽  
Xiaoqin Li ◽  
...  

Abstract Background Ectopic expression of CDX2 is associated with the development and progression of gastric cancer. Previous studies showed that CDX2 may be an upstream regulator of Reg IV expression in gastric cancer, and our previous report showed that Reg IV upregulated SOX9 expression and enhanced cell migration and invasion in gastric cancer cells. However, the regulatory roles of CDX2 have not been clarified in gastric cancer, and the correlation between CDX2 and Reg IV requires further study. Methods CDX2 and Reg IV were examined in gastric cancer specimens and paired adjacent tissues via real-time PCR and immunohistochemistry (IHC). The association between CDX2 and Reg IV was assessed using the χ2-test and Spearman’s rank correlation. To verify their relationship, knockdown and exogenous expression of CDX2 or Reg IV were performed in AGS and MKN-45 gastric cancer cells, and their expression was subsequently analyzed via a real-time PCR and western blotting. Wound-healing and Transwell assays were used to examine migration and invasion in AGS and MKN-45 cells following CDX2 silencing or overexpression. Results A positive correlation was observed between CDX2 and Reg IV expression at the mRNA and protein levels in gastric cancer tissues. CDX2 silencing significantly downregulated Reg IV expression, and CDX2 overexpression significantly upregulated Reg IV expression in AGS and MKN-45 cells. Neither Reg IV silencing nor overexpression had any effect on CDX2 protein expression in AGS or MKN-45 cells, even though both affected the expression of CDX2 mRNA. Functionally, CDX2 silencing significantly inhibited cell migration and invasion, and CDX2 overexpression significantly promoted cell migration and invasion in AGS and MKN-45 cells. Conclusions Our findings demonstrate that CDX2 expression was positively correlated with that of Reg IV in gastric cancer, and CDX2 promoted cell migration and invasion through upregulation of Reg IV expression in AGS and MKN-45 cells.


2021 ◽  
Vol 49 (4) ◽  
pp. 030006052110059
Author(s):  
Fangfang Yong ◽  
Hemei Wang ◽  
Chao Li ◽  
Huiqun Jia

Objective Previous studies suggested that sevoflurane exerts anti-proliferative, anti-migratory, and anti-invasive effects on cancer cells. To determine the role of sevoflurane on gastric cancer (GC) progression, we evaluated its effects on the proliferation, migration, and invasion of SGC7901, AGS, and MGC803 GC cells. Methods GC cells were exposed to different concentrations of sevoflurane (1.7, 3.4, or 5.1% v/v). Cell viability, migration, and invasion were evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and Transwell assays. Immunohistochemical staining and immunoblotting were performed to analyze forkhead box protein 3 (FOXP3) protein expression in tissue specimens and cell lines, respectively. Results FOXP3 was downregulated in human GC specimens and cell lines. Functionally, FOXP3 overexpression significantly inhibited the proliferation, migration, and invasion of GC cells and accelerated their apoptosis. Moreover, sevoflurane significantly blocked GC cell migration and invasion compared with the findings in the control group. However, FOXP3 silencing neutralized sevoflurane-induced apoptosis and the inhibition of GC cell migration and invasion. Sevoflurane-induced apoptosis and the suppression of migration and invasion might be associated with FOXP3 overactivation in GC cells. Conclusions Sevoflurane activated FOXP3 and prevented GC progression via inhibiting cell migration and invasion in vitro.


Oncotarget ◽  
2017 ◽  
Vol 8 (42) ◽  
pp. 71725-71735 ◽  
Author(s):  
Yecheng Li ◽  
Xiaodong Yang ◽  
Yong Wu ◽  
Kui Zhao ◽  
Zhenyu Ye ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document