Downregulated ribosomal protein L39 inhibits trophoblast cell migration and invasion by targeting E‐cadherin in the placenta of patients with preeclampsia

2021 ◽  
Vol 35 (4) ◽  
Author(s):  
Qiuling Jie ◽  
Fei Sun ◽  
Qi Li ◽  
Juan Zhu ◽  
Yunjian Wei ◽  
...  
2018 ◽  
Vol 32 (4) ◽  
pp. 705-714 ◽  
Author(s):  
Christina Ly ◽  
Jonathan Ferrier ◽  
Jeremiah Gaudet ◽  
Julien Yockell-Lelièvre ◽  
John Thor Arnason ◽  
...  

BMC Urology ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Cai Lv ◽  
Yuan Huang ◽  
Qingqing Lei ◽  
Zhenxiang Liu ◽  
Shixing Shen ◽  
...  

Abstract Background The metastasis-associated gene 1 (MTA1) has been extensively reported as a crucial oncogene, and its abnormal expression has been associated with the progression of numerous cancers. However, the role of MTA1 in renal cell carcinoma (RCC) progression and metastasis remains unclear. Herein, we investigated the expression of MTA1 and its role in RCC. Methods 109 matched clear cell RCCs (ccRCCs) and corresponding normal tissue samples were analyzed via immunohistochemistry to test the expression of MTA1. Human A498 cell lines were transfected with pcDNA3.1-Flag (control) or Flag-MTA1 to overexpress MTA1 or with specific interfering RNA (si-MTA1) or specific interfering negative control to knockdown MTA1 expression. Transfected cells were used in wound healing and transwell invasion assay. Quantitative real time polymerase chain reaction was used to assess the effect of MTA1 on MMP2/MMP9 and E-cadherin gene expression. Western blot was used to qualify the phosphorylation of p65. Results Herein, we found a significantly increased expression of MTA1 in 109 ccRCCs, compared to the corresponding normal tissue. In addition, the overexpression of MTA1 in A498 cells facilitated cell migration and invasion, while the down-regulation of MTA1 expression using specific interfering RNA sequences could decrease cell migration and invasion. Furthermore, we showed that MTA1 is up-regulated in ccRCCs, which contributes to the migration and invasion of human kidney cancer cells by mediating the expression of MMP2 and MMP9 through the NF-κB signaling pathway. Similarly, we found that MTA1 could regulate E-cadherin expression in RCCs. Conclusions MTA1 is overexpressed in RCC and is involved in the progression of RCC through NF-κB.


BMC Cancer ◽  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Jia-Wei Mei ◽  
Zi-Yi Yang ◽  
Hong-Gang Xiang ◽  
Runfa Bao ◽  
Yuan-Yuan Ye ◽  
...  

2019 ◽  
Vol 32 (5) ◽  
pp. 515-523 ◽  
Author(s):  
Dandan Xie ◽  
Jingping Zhu ◽  
Qianqian Liu ◽  
Jun Li ◽  
Mengjiu Song ◽  
...  

2011 ◽  
Author(s):  
Mehdi Naouar ◽  
Danièle Montaudon ◽  
Vincent Verbiest ◽  
Audrey Kauffmann ◽  
Audrey Laroche-Clary ◽  
...  

2019 ◽  
Vol 39 (2) ◽  
Author(s):  
Fang Xue ◽  
Jing Yang ◽  
Qirong Li ◽  
Haibin Zhou

Abstract Trophoblastic dysfunction, such as insufficient migration and invasion, is well-known to be correlated with preeclampsia (PE). Recently, microRNAs (miRNAs) have been implicated in diverse biological processes and human diseases, including PE. However, the expression and functions of miRNAs in the progression of PE, especially in the regulation of trophoblast cell migration and invasion remain largely unclear. Here, we compared the miRNAs expression profiles of PE patients with healthy controls using microarray assay and chose a significant increased miRNA-miR-34a-5p for further investigation. Overexpression of miR-34a-5p dramatically reduced migration and invasion in trophoblast HTR-8/SVneo cells, whereas enhanced by its inhibitor. Luciferase activity assay showed that miR-34a-5p directly target Smad family member 4 (Smad4), which is associated with cancer cell invasiveness and metastasis. We also found that Smad4 was down-regulated in PE patients, and an inverse relationship between Smad4 and miR-34a-5p expression levels was observed in placental tissues from PE patients. Further study showed that knockdown of Smad4 effectively attenuated the promoting effects of miR-34a-5p inhibition on the migration and invasion of HTR-8/SVneo cells. Taken together, these findings suggest that inhibition of miR-34a-5p improves invasion and migration of trophoblast cells by directly targetting Smad4, which indicated the potential of miR-34a-5p as a therapeutic target against PE.


Sign in / Sign up

Export Citation Format

Share Document