scholarly journals Evaluation of Physarum polycephalum plasmodial growth and lipid production using rice bran as a carbon source

2015 ◽  
Vol 15 (1) ◽  
Author(s):  
Hanh Tran ◽  
Steven Stephenson ◽  
Erik Pollock
2020 ◽  
Vol 82 (6) ◽  
pp. 1120-1130
Author(s):  
H. J. Choi

Abstract As a byproduct of agriculture, rice bran can be a good alternative carbon source to mass-produce microalgae and increase lipid content. The purpose of this study was to investigate the effects of rice bran extract (RBE) on the mass culture and oil content of microalgae. Various parameters were applied to the growth rate model to explain the dynamics of substrate inhibition and growth of microalgae. The rice bran contains 46.1% of carbohydrates, in which is 38.3% glucose, and is very suitable as a carbon source for microalgae growth. The culture with RBE had a four times higher biomass production than microalgae cultured on Jaworski's medium (JM) with a small amount of 1 g/L. In addition, for RBE, the lipid content was three times higher and saturated fatty acid was 3% lower than were those of JM. According to the above results, when Chlorella vulgaris is cultured using RBE, a high amount of biomass and high lipid content can be obtained with a small amount of RBE. RBE is a discarded waste and has a high content of glucose, so it can be replaced by an organic carbon source to increase microbial biomass growth and lipid content at low cost.


Aquaculture ◽  
2021 ◽  
pp. 736669
Author(s):  
Rildo José Vasconcelos de Andrade Brazil ◽  
Elizabeth Pereira dos Santos ◽  
Gisely Karla de Almeida Costa ◽  
Clarissa Vilela Figueiredo Campos ◽  
Suzianny Maria Bezerra Cabral da Silva ◽  
...  

2017 ◽  
Vol 42 (4) ◽  
pp. 1970-1976 ◽  
Author(s):  
Dennapa Sengmee ◽  
Benjamas Cheirsilp ◽  
Thanwadee Tachapattaweawrakul Suksaroge ◽  
Poonsuk Prasertsan

Author(s):  
G. K. Barbosa Silva ◽  
R. M. Oliveira Brandão ◽  
M. C. Mota Lins ◽  
B. G. Campelo ◽  
A. A. Barbosa Silveira ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5960
Author(s):  
Rahul Saini ◽  
Krishnamoorthy Hegde ◽  
Carlos Saul Osorio-Gonzalez ◽  
Satinder Kaur Brar ◽  
Pierre Vezina

The study aims to explore microbial lipid production using an abundant and low-cost lignocellulosic biomass derived from forestry residues. Sugar-rich undetoxified hydrolysate was prepared using hardwood and softwood sawdust and used for lipid production as a carbon source from an oleaginous yeast, Rhodosporidium toruloides-1588. The maximum biomass obtained was 17.09 and 19.56 g/L in hardwood and softwood hydrolysate, respectively. Sugar consumption in both hydrolysates was >95%, with a maximum lipid accumulation of 36.68% at 104 h and 35.24% at 96 h. Moreover, R. toruloides-1588 exhibited tolerance to several toxic compounds such as phenols, organic acids and furans present in hydrolysates. The lipid characterization showed several monosaturated and polyunsaturated fatty acids, making it a potential feedstock for biofuels and oleochemicals production. This study confirms the credibility of R. toruloides-1588 as a suitable lipid producer using hydrolysates from forestry residues as a substrate. Additionally, lipids obtained from R. toruloides-1588 could be a potential feedstock for advanced biofuel production as well as for food and pharmaceutical applications.


Catalysts ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1009
Author(s):  
Gwon Woo Park ◽  
Seongsoo Son ◽  
Myounghoon Moon ◽  
Subin Sin ◽  
Kyoungseon Min ◽  
...  

Microbial lipid production from oleaginous yeasts is a promising process for the sustainable development of the microbial biodiesel industry. However, the feedstock cost poses an economic problem for the production of microbial biodiesel. After lipid extraction, yeast biomass can be used as an organic source for microbial biodiesel production. In this study, volatile fatty acids (VFAs), produced via anaerobic digestion of a lipid-extracted yeast (LEY) residue, were utilized as a carbon source for the yeast Cryptococcus curvatus. The response surface methodology was used to determine the initial pH and inoculum volume for the optimal VFA production. The experimental result for VFA concentration was 4.51 g/L at an initial pH of 9 and an inoculation 25%. The optimization results from the response surface methodology showed that the maximal VFA concentration was 4.58 g/L at an initial pH of 8.40 and an inoculation of 39.49%. This study indicates that VFAs from LEY can be used as a carbon source for microbial biodiesel production, with the potential to significantly reduce feedstock costs.


Sign in / Sign up

Export Citation Format

Share Document