scholarly journals Alpine ecology, plant biodiversity and photosynthetic performance of marker plants in a nitrogen gradient induced by Alnus bushes

BMC Ecology ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Rexha Kaltrina ◽  
Bego Kristi ◽  
Zyruku Dea ◽  
Shuka Lulezim ◽  
Husi René ◽  
...  
Author(s):  
Natacha Frachon ◽  
Martin Gardner ◽  
David Rae

Botanic gardens, with their large holdings of living plants collected from around the world, are important guardians of plant biodiversity, but acquiring and curating these genetic resources is enormously expensive. For these reasons it is crucial that botanic gardens document and curate their collections in order to gain the greatest benefit from the plants in their care. Great priority is given to making detailed field notes and the process of documentation is often continued during the plants formative years when being propagated. However, for the large majority of plants this process often stops once the material is planted in its final garden location. The Data Capture Project at the Royal Botanic Garden Edinburgh is an attempt to document specific aspects of the plant collections so that the information captured can be of use to the research community even after the plants have died.


2017 ◽  
Vol 43 (6) ◽  
pp. 925
Author(s):  
Bin ZHENG ◽  
Wei ZHAO ◽  
Zheng XU ◽  
Da-Peng GAO ◽  
Yuan-Yuan JIANG ◽  
...  

2013 ◽  
Vol 37 (8) ◽  
pp. 1198
Author(s):  
Yuling YANG ◽  
Wei LI ◽  
Weizhou CHEN ◽  
Juntian XU

Author(s):  
Néstor David Giraldo ◽  
Sandra Marcela Correa ◽  
Andrés Arbeláez ◽  
Felix L. Figueroa ◽  
Rigoberto Ríos-Estepa ◽  
...  

AbstractIn this study the metabolic responses of Botryococcus braunii were analyzed upon different inorganic carbon dosages and nutrient limitation conditions in terms of lipid and biomass productivity, as well as photosynthetic performance. The nutritional schemes evaluated included different levels of sodium bicarbonate and nitrogen and phosphorus starvation, which were contrasted against standard cultures fed with CO2. Bicarbonate was found to be an advantageous carbon source since high dosages caused a significant increase in biomass and lipid productivity, in addition to an enhanced photosynthetic quantum yield and neutral lipids abundance. This contrasts to the commonly used approach of microalgae nutrient limitation, which leads to high lipid accumulation at the expense of impaired cellular growth, causing a decline in overall lipid productivity. The lipidome analysis served to hypothesize about the influence of the nutritional context on B. braunii structural and storage lipid metabolism, besides the adaptive responses exhibited by cells that underwent nutrient stress.


Sign in / Sign up

Export Citation Format

Share Document