Faculty Opinions recommendation of A widespread plant-fungal-bacterial symbiosis promotes plant biodiversity, plant nutrition and seedling recruitment.

Author(s):  
Jan Roelof van der Meer
2015 ◽  
Vol 10 (2) ◽  
pp. 389-399 ◽  
Author(s):  
Marcel GA van der Heijden ◽  
Susanne de Bruin ◽  
Ludo Luckerhoff ◽  
Richard SP van Logtestijn ◽  
Klaus Schlaeppi

2014 ◽  
Vol 63 (1) ◽  
pp. 139-148 ◽  
Author(s):  
Éva Lehoczky ◽  
M. Kamuti ◽  
N. Mazsu ◽  
J. Tamás ◽  
D. Sáringer-Kenyeres ◽  
...  

Plant nutrition is one of the most important intensification factors of crop production. The utilization of nutrients, however, may be modified by a number of production factors, including weed presence. Thus, the knowledge of occurring weed species, their abundance, nutrient and water uptake is extremely important to establish an appropriate basis for the evaluation of their risks or negative effects on crops. That is why investigations were carried out in a long-term fertilization experiment on the influence of different nutrient supplies (Ø, PK, NK, NPK) on weed flora in maize field.The weed surveys recorded similar diversity on the experimental area: the species of A. artemisiifolia, S. halepense and D. stramonium were dominant, but C. album and C. hybridum were also common. These species and H. annuus were the most abundant weeds.Based on the totalized and average data of all treatments, density followed the same tendency in the experimental years. It was the highest in the PK treated and untreated plots, and significantly exceeded the values of NK fertilized areas. Presumably the better N availability promoted the development of nitrophilic weeds, while the mortality of other small species increased.Winter wheat and maize forecrops had no visible influence on the diversity and the intensity of weediness. On the contrary, there were consistent differences in the density of certain weed species in accordance to the applied nutrients. A. artemisiifolia was present in the largest number in the untreated control and PK fertilized plots. The density of S. halepense and H. annuus was also significantly higher in the control areas. The number of their individuals was smaller in those plots where N containing fertilizers were used. Contrary to them, the density of D. stramonium, C. album and C. hybridum was the highest in the NPK treatments.


2006 ◽  
Vol 34 (1) ◽  
pp. 151-154 ◽  
Author(s):  
Katalin Debreczeni ◽  
Sándor Hoffmann ◽  
Katalin Berecz

Author(s):  
Natacha Frachon ◽  
Martin Gardner ◽  
David Rae

Botanic gardens, with their large holdings of living plants collected from around the world, are important guardians of plant biodiversity, but acquiring and curating these genetic resources is enormously expensive. For these reasons it is crucial that botanic gardens document and curate their collections in order to gain the greatest benefit from the plants in their care. Great priority is given to making detailed field notes and the process of documentation is often continued during the plants formative years when being propagated. However, for the large majority of plants this process often stops once the material is planted in its final garden location. The Data Capture Project at the Royal Botanic Garden Edinburgh is an attempt to document specific aspects of the plant collections so that the information captured can be of use to the research community even after the plants have died.


2017 ◽  
Vol 70 ◽  
pp. 160-164 ◽  
Author(s):  
G.W. Bourdôt ◽  
S. Jackman ◽  
D.J. Saville

Flupropanate (sodium 2,2,3,3 tetrafluoropropanate), a slow-acting lipid bio- synthesis-inhibiting herbicide, was recently registered in New Zealand as Taskforce (745 g/L flupropanate as the sodium salt) for the selective and long-term control of Nassella trichotoma (nassella tussock) in pastures. In five dose-response experiments in permanent hill pastures in Canterbury, conducted between 2012 and 2016, we measured the efficacy of the herbicide against established plants of N. trichotoma and its residual activity against recruiting seedlings. Mortality, as an average across the five sites, was 93% 1.5 years after applying 1.49 kg flupropanate/ha (the label-recommended rate), and 100% at 2.98 kg/ha. This indicates that an application rate higher than the label rate will be necessary for complete control of a N. trichotoma infestation. The presence of 1,000 and 6,250 visible seedlings of N. trichotoma/ha in the autumn 3.2 and 2.1 years after applying 1.49 kg flupropanate/ha (at a Greta Valley and Scargill site respectively) indicates that the herbicide’s soil residues had decayed within 12 months to a concentration lower than necessary to kill the germinating seedlings of N. trichotoma.


Sign in / Sign up

Export Citation Format

Share Document