scholarly journals Comparison of stresses in monoblock tilted implants and conventional angled multiunit abutment-implant connection systems in the all-on-four procedure

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Özge Özdal Zincir ◽  
Ateş Parlar

Abstract Background The All-on-four dental implant method is an implantology method designed to provide a comfortable prosthetic treatment option by avoiding advanced surgical procedures. This research aims to compare and evaluate the stress and tension values in conventional angled multiunit abutment-implant connection systems and monoblock dental implants used in the all-on-four procedure with finite element analysis. Methods Two master models were created by placing four implants connected to multiunit abutments (group A) in the interforaminal region of a completely edentulous mandible and four monoblock implants (group B) in the same region of another completely edentulous mandible. Group A implants were classified according to their diameter as follows: 3.5 mm (M1A), 4.0 mm (M2A), and 4.5 mm (M3A). Similarly, group B implants were classified as M1B, M2B, and M3B. In the six models rehabilitated with acrylic fixed prostheses, a 100 N force was applied to the anterior implant region, and a 250 N force was applied to the posterior cantilever in both axial and 30° oblique directions. Von Mises stresses were analyzed in the bone and implant regions of all models. Results M1A and M1B, M2A and M2B, and M3A and M3B were compared with each other under axial and oblique forces. The maximum Von Mises stresses in the bone around implants and the prosthesis screws, and the maximum and minimum principal stresses in the cortical and trabecular bone in group A models were significantly higher than those in group B models. Conclusions In monoblock implant systems under axial and oblique forces, higher stress is accumulated in the bone, prosthesis screw and implant compared to multiunit abutment-implant connection systems.

2020 ◽  
Author(s):  
Özge Özdal Zincir ◽  
Ateş Parlar

Abstract Background: The All-on-four dental implant method is an implantology method designed to provide a comfortable prosthetic treatment option by avoiding advanced surgical procedures. This research aims to compare and evaluate the stress and tension values in conventional angled multiunit abutment-implant connection systems and monoblock dental implants used in the all-on-four procedure with finite element analysis.Methods: Two master models were created by placing four implants connected to multiunit abutments (group A) in the interforaminal region of a completely edentulous mandible and four monoblock implants (group B) in the same region of another completely edentulous mandible. Group A implants were classified according to their diameter as follows: 3.5 mm (M1A), 4.0 mm (M2A), and 4.5 mm (M3A). Similarly, group B implants were classified as M1B, M2B, and M3B. In the six models rehabilitated with acrylic fixed prostheses, a 100 N force was applied to the anterior implant region, and a 250 N force was applied to the posterior cantilever in both axial and 30° oblique directions. Von Mises stresses were analyzed in the bone and implant regions of all models.Results: M1A and M1B, M2A and M2B, and M3A and M3B were compared with each other under axial and oblique forces. The maximum Von Mises stresses in the bone around implants and the prosthesis screws, and the maximum and minimum principal stresses in the cortical and trabecular bone in group A models were significantly higher than those in group B models.Conclusions: This study shows that the use of monoblock implants without abutment-implant connections can prevent bacterial accumulation in micro-gaps, but the biomechanical properties of this implant system should be improved.


Author(s):  
Taygun SEZER ◽  
Kerem Kilic ◽  
Emir Esim

In the all-on-four concept, the positions of both posterior and anterior implants can affect stress distribution. The aim of this study was to examine the effect of the position of anterior implants on stress distribution in the implant, the bone around the implant, and prosthetic components in the resorbed maxilla using the all-on-four concept. All-on-four designs were prepared with three different anterior implant positions in a fully edentulous maxilla. Anterior implants were placed axially in the central incisor area in model 1, in the lateral incisors area in model 2, and in the canine area in model 3, forming three groups. The von Mises and principal stresses in the bone tissue and the von Mises stresses in the implant and prosthetic components were evaluated by three-dimensional finite element analysis. There were more stresses on the cortical bone than cancellous bone. The stresses on the bone tissue and implant components were generally concentrated around the posterior implant, whereas the stresses on the prosthetic components were generally concentrated in the anterior region. Changing the anterior implant positions from the central tooth to the canine tooth reduced the stress on the bone around the implant. The highest von Mises stresses occurred in the prosthetic superstructure in all models, whereas the lowest stresses occurred in the cancellous bone. Changing the position of the anterior implants from the central tooth to the canine area in the maxillary all-on-four concept created a favourable stress distribution.


2020 ◽  
Vol 28 (6) ◽  
pp. 603-613 ◽  
Author(s):  
Efe Can Sivrikaya ◽  
Mehmet Sami Guler ◽  
Muhammed Latif Bekci

BACKGROUND: Zirconia has become a popular biomaterial in dental implant systems because of its biocompatible and aesthetic properties. However, this material is more fragile than titanium so its use is limited. OBJECTIVES: The aim of this study was to compare the stresses on morse taper implant systems under parafunctional loading in different abutment materials using three-dimensional finite element analysis (3D FEA). METHODS: Four different variations were modelled. The models were created according to abutment materials (zirconia or titanium) and loading (1000 MPa vertical or oblique on abutments). The placement of the implants (diameter, 5.0 × 15 mm) were mandibular right first molar. RESULTS: In zirconia abutment models, von Mises stress (VMS) values of implants and abutments were decreased. Maximum and minimum principal stresses and VMS values increased in oblique loading. VMS values were highest in the connection level of the conical abutments in all models. CONCLUSIONS: Using conical zirconia abutments decreases von Mises stress values in abutments and implants. However, these values may exceed the pathological limits in bruxism patients. Therefore, microfractures may be related to the level of the abutment.


2015 ◽  
Vol 6;18 (6;11) ◽  
pp. E1101-E1110
Author(s):  
Ah-Reum Cho

Background: Vertebroplasty is an effective treatment for osteoporotic vertebral fractures, which are one of the most common fractures associated with osteoporosis. However, clinical observation has shown that the risk of adjacent vertebral body fractures may increase after vertebroplasty. The mechanism underlying adjacent vertebral body fracture after vertebroplasty is not clear; excessive stiffness resulting from polymethyl methacrylate has been suspected as an important mechanism. Objectives: The aim of our study was to compare the effects of bone cement stiffness on adjacent vertebrae after osteoporotic vertebroplasty under load-controlled versus displacementcontrolled conditions. Study Design: An experimental computer study using a finite element analysis. Setting: Medical research institute, university hospital, Korea. Methods: A three-dimensional digital anatomic model of L1/2 bone structure was reconstructed from human computed tomographic images. The reconstructed three-dimensional geometry was processed for finite element analysis such as meshing elements and applying material properties. Two boundary conditions, load-controlled and displacement-controlled methods, were applied to each of 5 deformation modes: compression, flexion, extension, lateral bending, and torsion. Results: The adjacent L1 vertebra, irrespective of augmentation, revealed nearly similar maximum von Mises stresses under the load-controlled condition. However, for the displacementcontrolled condition, the maximum von Mises stresses in the cortical bone and inferior endplate of the adjacent L1 vertebra increased significantly after cement augmentation. This increase was more significant than that with stiffer bone cement under all modes, except the torsion mode. Limitations: The finite element model was simplified, excluding muscular forces and incorporating a large volume of bone cement, to more clearly demonstrate effects of bone cement stiffness on adjacent vertebrae after vertebroplasty. Conclusion: Excessive stiffness of augmented bone cement increases the risk of adjacent vertebral fractures after vertebroplasty in an osteoporotic finite element model. This result was most prominently observed using the displacement-controlled method. Key words: Bone cements, displacement-controlled method, finite element analysis, loadcontrolled method, osteoporosis, osteoporotic fracture, polymethyl methacrylate, vertebroplasty


2021 ◽  
Vol 3 (3) ◽  
pp. 33-37
Author(s):  
Jairo Aparecido Martins ◽  
Estaner Claro Romão

This paper presents an investigation of changes on design and material of a Howe bridge under vertical loads. Specifically, it aimed to find out how small changes on Howe bridge design and material affected von Mises stresses as well as stresses at Z direction. As a method, it was used a finite element analysis (linear-elastic) by Autodesk F-360. Half of a bridge was designed (one bridge side) and loaded with a central higher load and two equal smaller lateral loads. In essence, von Mises stresses (s) and stress at Z direction (sz) decreased on stresses values until a certain design change, which was proportional to a raise of mass due to beams added on the trusses. With a change of material to a lighter metal, from steel to aluminum, it was possible to overcome the mass drawback brought by steel and utterly possible to end up for a more effective design for a Howe truss bridge by applying minimal design changes.


2019 ◽  
Vol 47 (4) ◽  
pp. 1555-1564 ◽  
Author(s):  
Na Ni ◽  
Jing Ye ◽  
Liyuan Wang ◽  
Simin Shen ◽  
Lei Han ◽  
...  

Objective This study used finite element analysis (FEA) to assess the von Mises stresses of a mandibular first premolar after removing a separated instrument with an ultrasonic technique. Methods FEA models of the original and treated mandibular first premolar were reconstructed, and three models (the original canal, size 30/taper 0.04 canal, and separated instrument removal canal) were created. Two-direction (vertical and lateral) loading patterns were simulated with a 175-N force. The maximum von Mises stresses of the models within the roots from the apex to the cervical region were collected and summarized. Results Under vertical and lateral loads, all maximal values in the three models were localized in the straight-line access region. Compared with the original model (model 1), the treated models (models 2 and 3) had greater maximum stress values from the apex to the cervical region. Greater differences in the maximum von Mises stresses between models 2 and 3 were present in the straight-line access region. Conclusions Separated instrument removal caused changes in stress distribution and increases in stress concentration in the straight-line access region of roots.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chunping Lin ◽  
Hongcheng Hu ◽  
Junxin Zhu ◽  
Yuwei Wu ◽  
Qiguo Rong ◽  
...  

Abstract Background Stress concentration may cause bone resorption even lead to the failure of implantation. This study was designed to investigate whether a certain sagittal root position could cause stress concentration around maxillary anterior custom-made root-analogue implants via three-dimensional finite element analysis. Methods The von Mises stresses in the bone around implants in different groups were compared by finite element analysis. Six models were constructed and divided into two groups through Geomagic Studio 2012 software. The smooth group included models of unthreaded custom-made implants in Class I, II or III sagittal root positions. The threaded group included models of reverse buttress-threaded implants in the three positions. The von Mises stress distributions and the range of the stresses under vertical and oblique loads of 100 N were analyzed through ANSYS 16.0 software. Results Stress concentrations around the labial lamella area were more prominent in the Class I position than in the Class II and Class III positions under oblique loading. Under vertical loading, the most obvious stress concentration areas were the labial lamella and palatal apical areas in the Class I and Class III positions, respectively. Stress was relatively distributed in the labial and palatal lamellae in the Class II position. The maximum von Mises stresses in the bone around the custom-made root-analogue implants in this study were lower than around traditional implants reported in the literature. The maximum von Mises stresses in this study were all less than 25 MPa in cortical bone and less than 6 MPa in cancellous bone. Additionally, compared to the smooth group, the threaded group showed lower von Mises stress concentration in the bone around the implants. Conclusions The sagittal root position affected the von Mises stress distribution around custom-made root-analogue implants. There was no certain sagittal root position that could cause excessive stress concentration around the custom-made root-analogue implants. Among the three sagittal root positions, the Class II position would be the most appropriate site for custom-made root-analogue implants.


Author(s):  
Alexandre Huberto Balbino Selhorst ◽  
Rafael Elias Meyer ◽  
Tatielen Pereira Costa ◽  
Liércio André Isoldi

This paper studies the possibility of using SHELL elements on structures that are usually designed using BEAM or BAR elements. Using SHELL elements in such structures, named reticulated structures, opens the possibility to remove material from the structures’ members by adding holes. Once the members get holes, the final weight of the structure and material consumption will drop. In order to develop the study, a total of three different structures were analyzed using the software ANSYS®. This software uses the Finite Element Method to solve the equations originated from the designed structure upon it is meshed and the boundary conditions are set. Several results between SHELL and SOLID elements for each one of the structures were compared. The comparison of SHELL model with a SOLID model is used as a verification process, for SOLID elements are known to return accurate values. All of the meshes were tested by the independence mesh study to check its convergence. It is shown that the results are in a very good acceptable range with differences no bigger than 0.1 mm for displacements, and the map of von Mises stresses are pretty similar. Von Mises stresses for Finite Element Analysis for the C-Shaped Truss are shown in a figure comparing the results between the two finite elements used. This figure shows that there are no major differences between the SHELL and SOLID analyses. The Finite Element Analyses results were compared to analytical solutions, also. In this case, a noticeable difference in one structure for von Mises Stress was found. This difference, however, is understandable and reasonable, given the works presented on this paper.


2013 ◽  
Vol 6 (2) ◽  
pp. 93-97 ◽  
Author(s):  
Neralla Mahathi ◽  
Emmanuel Azariah ◽  
C. Ravindran

Introduction The aim of the study was to propose an ideal plating design for fractures running through the mental foramen. Methods The study compared three plating designs—two four-hole miniplates, 2 × 2-hole three-dimensional (3D) plate, and modified 2 × 2-hole 3D plate (posterior strut removed)—using finite element analysis. Von Mises stresses generated around the plates and bone were measured, as well as the mobility that is generated between the fracture fragments by applying muscle forces to generate bite force in one test and applying a force of 500 N over the premolars and first molar region in the second test. Results Von Mises stress in bone with miniplates measured 9.24 MPa in test 1 and 131.99 MPa in test 2. The stress with unmodified 3D plates measured 34.9 MPa in test 1 and150.03 MPa in test 2. The stress with modified 3D plates measured 24.98 MPa in test 1 and 150.59 MPa in test 2. Von Mises stress on the plates and screws measured 28.23 MPa, 95.97 MPa, 72.93 MPa in test 1 and 458.63 MPa, 779.01 MPa, 742.39 MPa in test 2 on miniplates, unmodified 3D plates, and modified 3D plates, respectively. The fracture mobility generated in the model with miniplates measured 0.001 mm in test 1 and 0.01 mm in test 2 and 0.007 mm and 0.02 mm in the model with unmodified 3D plates in test 1 and in test 2, respectively. In the model with modified 3D plates, the value was 0.001 mm and 0.01 mm in tests 1 and 2, respectively. Conclusion The ideal plate design is the two-plate technique with minimal stress generation on the bone and the hardware. The modified 3D plate has adequate strength to be used in the region but needs to be studied in detail.


Sign in / Sign up

Export Citation Format

Share Document