scholarly journals Acorus tatarinowii Schott extract reduces cerebral edema caused by ischemia–reperfusion injury in rats: involvement in regulation of astrocytic NKCC1/AQP4 and JNK/iNOS-mediated signaling

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Yu-Chen Lee ◽  
Shung-Te Kao ◽  
Chin-Yi Cheng

Abstract Background This study aimed to evaluate the effects of the Acorus tatarinowii Schott [Shi Chang Pu (SCP)] extract administered at the start of 2 h of middle cerebral artery occlusion (MCAo), followed by 3 d of reperfusion, and to determine mechanisms involved in anti-edema effects in the penumbra of the cerebral cortex. Method Rats were intraperitoneally administered the SCP extract at a dose of 0.25 g/kg (SCP-0.25 g), 0.5 g/kg (SCP-0.5 g), or 1 g/kg (SCP-1 g) at the start of MCAo. Result SCP-0.5 g and SCP-1 g treatments effectively reduced the cerebral infarct size, ameliorated cerebral edema, reduced blood–brain barrier permeability, and restored neurological function. SCP-0.5 g and SCP-1 g treatments markedly downregulated the levels of glial fibrillary acidic protein, Na+-K+-2Cl− cotransporter type 1 (NKCC1), aquaporin 4 (AQP4), phospho-c-Jun N-terminal kinase (p-JNK)/JNK, inducible nitric oxide synthase (iNOS), 3-nitrotyrosine, intercellular adhesion molecule-1 (ICAM-1), matrix metalloproteinase-9 (MMP-9), vascular endothelial growth factor-A (VEGF-A), and zonula occluden-1 (ZO-1) and upregulated ZO-3 expression in the penumbra of the cerebral cortex 3 d after reperfusion. Conclusions SCP-0.5 g and SCP-1 g treatments exert neuroprotective effects against cerebral infarction and cerebral edema partially by mitigating astrocytic swelling and blood–brain barrier disruption. Moreover, the anti-cerebral edema effects of SCP extract treatments are possibly associated with the downregulation of astrocytic NKCC1/AQP4 and JNK/iNOS-mediated ICAM-1/MMP-9 signaling in the penumbra of the cerebral cortex 3 d after reperfusion.

1998 ◽  
Vol 49 (1) ◽  
pp. 77-84 ◽  
Author(s):  
Pedro Cuevas M.D., Ph.D., F.A.C.A. ◽  
Fernando Carceller M.D., Ph.D. ◽  
Isabel Muñoz-Willery B.Sc., Ph.D. ◽  
Guillermo Giménez-Gallego B.Sc., Ph.D.

2019 ◽  
Vol 20 (15) ◽  
pp. 3752 ◽  
Author(s):  
Elena Lonati ◽  
Paola Antonia Corsetto ◽  
Gigliola Montorfano ◽  
Stefania Zava ◽  
Tatiana Carrozzini ◽  
...  

Ischemic-reperfusion (I/R) injury induced a remodeling of protein and lipid homeostasis, under oxidative stress and inflammatory status. Starvation occurring during I/R is a condition leading to autophagy activation, which allows abnormal material clearance or amino acid, or both, and fatty acid (FA) recycling essential for survival. This study investigated the lipid reshaping, peroxidation, and related-signaling pathways, in rat brain endothelial cells (RBE4) subjected to 3 h of oxygen and glucose deprivation (OGD) and restoration of standard condition (I/R in vitro model). Lipids and proteins were analyzed after 1 or 24 h of oxygen and nutrient restoration. Together with the oxidative stress and inflammatory status, I/R injury induced a reshaping of neutral lipids and biogenesis of lipid droplets (LD) with excessive lipid storage. The increase of LC3-II/LC3-I ratio, an autophagy marker, and LC3 co-localization with LD suggest the activation of lipophagy machinery to counteract the cell engulfment. Lipophagy leads to cholesterol ester (CE) hydrolysis, increasing free cholesterol (FC) secretion, which occurred by specific transporters or unconventional exocytosis pathways, or both. Here, we propose that an unconventional spreading of FC and other lipid metabolites may influence the neurovascular unit (NVU) cells, contributing to Blood brain barrier (BBB) alteration or adaptation, or both, to the cumulative effects of several transient ischemia.


2020 ◽  
Author(s):  
Shuaishuai Gong ◽  
Jieman Wang ◽  
Zhuo Chen ◽  
Xuewei Pan ◽  
Yunhao Wu ◽  
...  

Abstract Background : Cerebral ischemia-reperfusion (I/R) injury as a serious threat to human health is characterized by cerebral endothelial leakage, as a result of the damage of blood-brain barrier (BBB). It is thus quite attractive to realize real-time monitoring of BBB damage for therapeutic surveillance.Methods : In this study, a radioactive probe is constructed by conjugating ruscogenin (Rus), a neuroprotectants, to technetium-99m (Tc 99m ) to assess the damage of cerebral endothelial in BBB.Results : In vitro study proves that the probe can penetrate more efficiently in damaged BBB. Then, longitudinal nuclear imaging distinguishes mice with BBB leakage from normal ones, which is validated by evans blue staining of brain tissue. Higher nuclear signal also correlates with poorer blood circulation in brain. Further, by visualizing brain signal during drug treatment, the probe finds that the most obvious protective efficacy of Rus occurs at 12 h post administration, which is superior than edaravone (Edara).Conclusion : Altogether, the probe is promising to monitor I/R injury real-time by radioactive-imaging of BBB integrity. Importantly, Rus as a neuroprotectants may serve as a potential theranostic agent for I/R treatment.


Sign in / Sign up

Export Citation Format

Share Document