scholarly journals Migration through a small pore disrupts inactive chromatin organization in neutrophil-like cells

BMC Biology ◽  
2018 ◽  
Vol 16 (1) ◽  
Author(s):  
Elsie C. Jacobson ◽  
Jo K. Perry ◽  
David S. Long ◽  
Ada L. Olins ◽  
Donald E. Olins ◽  
...  
2017 ◽  
Author(s):  
Johannes Nuebler ◽  
Geoffrey Fudenberg ◽  
Maxim Imakaev ◽  
Nezar Abdennur ◽  
Leonid Mirny

AbstractMammalian chromatin is organized on length scales ranging from individual nucleosomes to chromosomal territories. At intermediate scales two dominant features emerge in interphase: (i) alternating regions (<5Mb) of active and inactive chromatin that spatially segregate into different compartments, and (ii) domains (<1Mb), i.e. regions that preferentially interact internally, which are also termed topologically associating domains (TADs) and are central to gene regulation. There is growing evidence that TADs are formed by active extrusion of chromatin loops by cohesin, whereas compartments are established by a phase separation process according to local chromatin states. Here we use polymer simulations to examine how the two processes, loop extrusion and compartmental segregation, work collectively and potentially interfere in shaping global chromosome organization. Our integrated model faithfully reproduces Hi-C data from previously puzzling experimental observations, where targeting of the TAD-forming machinery led to changes in compartmentalization. Specifically, depletion of chromatin-associated cohesin reduced TADs and revealed hidden, finer compartments, while increased processivity of cohesin led to stronger TADs and reduced compartmentalization, and depletion of the TAD boundary protein, CTCF, weakened TADs while leaving compartments unaffected. We reveal that these experimental perturbations are special cases of a general polymer phenomenon of active mixing by loop extrusion. This also predicts that interference with chromatin epigenetic states or nuclear volume would affect compartments but not TADs. Our results suggest that chromatin organization on the megabase scale emerges from competition of non-equilibrium active loop extrusion and epigenetically defined compartment structure.


2017 ◽  
Author(s):  
Naoki Kubo ◽  
Haruhiko Ishii ◽  
David Gorkin ◽  
Franz Meitinger ◽  
Xiong Xiong ◽  
...  

SummaryThe CCCTC-binding factor (CTCF) is widely regarded as a key player in chromosome organization in mammalian cells, yet direct assessment of the impact of loss of CTCF on genome architecture has been difficult due to its essential role in cell proliferation and early embryogenesis. Here, using auxin-inducible degron techniques to acutely deplete CTCF in mouse embryonic stem cells, we show that cell growth is severely slowed yet chromatin organization remains largely intact after loss of CTCF. Depletion of CTCF reduces interactions between chromatin loop anchors, diminishes occupancy of cohesin complex genome-wide, and slightly weakens topologically associating domain (TAD) structure, but the active and inactive chromatin compartments are maintained and the vast majority of TAD boundaries persist. Furthermore, transcriptional regulation and histone marks associated with enhancers are broadly unchanged upon CTCF depletion. Our results suggest CTCF-independent mechanisms in maintenance of chromatin organization.


2018 ◽  
Vol 115 (29) ◽  
pp. E6697-E6706 ◽  
Author(s):  
Johannes Nuebler ◽  
Geoffrey Fudenberg ◽  
Maxim Imakaev ◽  
Nezar Abdennur ◽  
Leonid A. Mirny

Mammalian chromatin is spatially organized at many scales showing two prominent features in interphase: (i) alternating regions (1–10 Mb) of active and inactive chromatin that spatially segregate into different compartments, and (ii) domains (<1 Mb), that is, regions that preferentially interact internally [topologically associating domains (TADs)] and are central to gene regulation. There is growing evidence that TADs are formed by active extrusion of chromatin loops by cohesin, whereas compartmentalization is established according to local chromatin states. Here, we use polymer simulations to examine how loop extrusion and compartmental segregation work collectively and potentially interfere in shaping global chromosome organization. A model with differential attraction between euchromatin and heterochromatin leads to phase separation and reproduces compartmentalization as observed in Hi-C. Loop extrusion, essential for TAD formation, in turn, interferes with compartmentalization. Our integrated model faithfully reproduces Hi-C data from puzzling experimental observations where altering loop extrusion also led to changes in compartmentalization. Specifically, depletion of chromatin-associated cohesin reduced TADs and revealed finer compartments, while increased processivity of cohesin strengthened large TADs and reduced compartmentalization; and depletion of the TAD boundary protein CTCF weakened TADs while leaving compartments unaffected. We reveal that these experimental perturbations are special cases of a general polymer phenomenon of active mixing by loop extrusion. Our results suggest that chromatin organization on the megabase scale emerges from competition of nonequilibrium active loop extrusion and epigenetically defined compartment structure.


2018 ◽  
Author(s):  
Elsie C. Jacobson ◽  
Jo K. Perry ◽  
David S. Long ◽  
Ada L. Olins ◽  
Donald E. Olins ◽  
...  

AbstractBackgroundMammalian cells are flexible and can rapidly change shape when they contract, adhere, or migrate. Their nucleus must be stiff enough to withstand cytoskeletal forces, but flexible enough to remodel as the cell changes shape. This is particularly important for cells migrating through constricted space, where the nuclear shape must change in order to fit through the constriction. This occurs many times in the life cycle of a neutrophil, which must protect its chromatin from damage and disruption associated with migration.ResultsTotal RNA-sequencing identified that neutrophil migration through 5 or 14μm pores was associated with changes in the transcript levels of inflammation and chemotaxis-related genes, when compared to unmigrated cells. Differentially expressed transcripts specific to migration with constriction were enriched for groups of genes associated with cytoskeletal remodeling.Hi-C was used to capture the genome organization in control and migrated cells. Minimal switching was observed between the active (A) and inactive (B) compartments after migration. However, global depletion of short range contacts was observed following migration with constriction compared to migration without constriction. Regions with disrupted contacts, TADs, and compartments were enriched for inactive chromatin.ConclusionShort range genome organization is preferentially altered in inactive chromatin, possibly protecting transcriptionally active contacts from the disruptive effects of migration with constriction. This is consistent with current hypotheses implicating heterochromatin as the mechanoresponsive form of chromatin. Further investigation concerning the contribution of heterochromatin to stiffness, flexibility, and protection of nuclear function will be important for understanding cell migration in human health and disease.


2021 ◽  
Vol 71 ◽  
pp. 148-155
Author(s):  
Kaustubh Wagh ◽  
David A. Garcia ◽  
Arpita Upadhyaya

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Takehiko Manabe ◽  
Kenji Ono ◽  
Soichi Oka ◽  
Yuichiro Kawamura ◽  
Toshihiro Osaki

Abstract Background Pleuroperitoneal communication (PPC) is rarely observed, accounting for 1.6% of all patients who undergo continuous ambulatory peritoneal dialysis (CAPD). Although there have been several reports concerning the management of this condition, we have encountered several cases in which control failed. We herein report a valuable case of PPC in which laparoscopic pneumoperitoneum with video-assisted thoracic surgery (VATS) was useful for supporting the diagnosis and treatment. Case presentation The patient was a 58-year-old woman with chronic renal failure due to chronic renal inflammation who was referred to a nephrologist in our hospital to undergo an operation for the induction of CAPD. Post-operatively, she had respiratory failure, and chest X-ray and computed tomography (CT) showed right-sided hydrothorax that decreased when the injection of peritoneal dialysate was interrupted. Therefore, PPC was suspected, and she was referred to our department for surgical repair. We planned surgical treatment via video-assisted thoracic surgery. During the surgery, we failed to detect any lesions with thoracoscopy alone; we therefore added a laparoscopic port at her right-sided abdomen near the navel and infused CO2 gas into the abdominal cavity. On thoracoscopy, bubbles were observed emanating from a small pore at the central tendon of the diaphragm, which was considered to be the lesion responsible for the PPC. We closed it by suturing directly. Conclusions VATS with laparoscopic pneumoperitoneum should be considered as an effective method for inspecting tiny pores of the diaphragm, especially when the lesions responsible for PPC are difficult to detect.


Sign in / Sign up

Export Citation Format

Share Document