scholarly journals Genes underlying the evolution of tetrapod testes size

BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Joanna Baker ◽  
Andrew Meade ◽  
Chris Venditti

Abstract Background Testes vary widely in mass relative to body mass across species, but we know very little about which genes underlie and contribute to such variation. This is partly because evidence for which genes are implicated in testis size variation tends to come from investigations involving just one or a few species. Contemporary comparative phylogenetic methods provide an opportunity to test candidate genes for their role in phenotypic change at a macro-evolutionary scale—across species and over millions of years. Previous attempts to detect genotype-phenotype associations across species have been limited in that they can only detect where genes have driven directional selection (e.g. brain size increase). Results Here, we introduce an approach that uses rates of evolutionary change to overcome this limitation to test whether any of twelve candidate genes have driven testis size evolution across tetrapod vertebrates—regardless of directionality. We do this by seeking a relationship between the rates of genetic and phenotypic evolution. Our results reveal five genes (Alkbh5, Dmrtb1, Pld6, Nlrp3, Sp4) that each have played unique and complex roles in tetrapod testis size diversity. In all five genes, we find strong significant associations between the rate of protein-coding substitutions and the rate of testis size evolution. Such an association has never, to our knowledge, been tested before for any gene or phenotype. Conclusions We describe a new approach to tackle one of the most fundamental questions in biology: how do individual genes give rise to biological diversity? The ability to detect genotype-phenotype associations that have acted across species has the potential to build a picture of how natural selection has sculpted phenotypic change over millions of years.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Manuel Will ◽  
Mario Krapp ◽  
Jay T. Stock ◽  
Andrea Manica

AbstractIncreasing body and brain size constitutes a key macro-evolutionary pattern in the hominin lineage, yet the mechanisms behind these changes remain debated. Hypothesized drivers include environmental, demographic, social, dietary, and technological factors. Here we test the influence of environmental factors on the evolution of body and brain size in the genus Homo over the last one million years using a large fossil dataset combined with global paleoclimatic reconstructions and formalized hypotheses tested in a quantitative statistical framework. We identify temperature as a major predictor of body size variation within Homo, in accordance with Bergmann’s rule. In contrast, net primary productivity of environments and long-term variability in precipitation correlate with brain size but explain low amounts of the observed variation. These associations are likely due to an indirect environmental influence on cognitive abilities and extinction probabilities. Most environmental factors that we test do not correspond with body and brain size evolution, pointing towards complex scenarios which underlie the evolution of key biological characteristics in later Homo.


2019 ◽  
Vol 69 (3) ◽  
pp. 265-279 ◽  
Author(s):  
Chun Lan Mai ◽  
Wen Bo Liao

Abstract Selection pressure is an important force in shaping the evolution of vertebrate brain size among populations within species as well as between species. The evolution of brain size is tightly linked to natural and sexual selection, and life-history traits. In particular, increased environmental stress, intensity of sexual selection, and slower life history usually result in enlarged brains. However, although previous studies have addressed the causes of brain size evolution, no systematic reviews have been conducted to explain brain size in anurans. Here, we review whether brain size evolution supports the cognitive buffer hypothesis (CBH), the expensive tissue hypothesis (ETH), or the developmental cost hypothesis (DCH) by analyzing the intraspecific and/or interspecific patterns in brain size and brain regions (i.e., olfactory nerves, olfactory bulbs, telencephalon, optic tectum, and cerebellum) associated with ecological factors (habitat, diet and predator risk), sexual selection intensity, life-history traits (age at sexual maturity, mean age, longevity, clutch size and egg size, testis size and sperm length), and other energetic organs. Our findings suggest that brain size evolution in anurans supports the CBH, ETH or DCH. We also suggest future directions for studying the relationships between brain size evolution and crypsis (i.e., ordinary mucous glands in the skin), and food alteration in different developmental stages.


2021 ◽  
Vol 288 (1947) ◽  
Author(s):  
Orlin S. Todorov ◽  
Simone P. Blomberg ◽  
Anjali Goswami ◽  
Karen Sears ◽  
Patrik Drhlík ◽  
...  

Considerable controversy exists about which hypotheses and variables best explain mammalian brain size variation. We use a new, high-coverage dataset of marsupial brain and body sizes, and the first phylogenetically imputed full datasets of 16 predictor variables, to model the prevalent hypotheses explaining brain size evolution using phylogenetically corrected Bayesian generalized linear mixed-effects modelling. Despite this comprehensive analysis, litter size emerges as the only significant predictor. Marsupials differ from the more frequently studied placentals in displaying a much lower diversity of reproductive traits, which are known to interact extensively with many behavioural and ecological predictors of brain size. Our results therefore suggest that studies of relative brain size evolution in placental mammals may require targeted co-analysis or adjustment of reproductive parameters like litter size, weaning age or gestation length. This supports suggestions that significant associations between behavioural or ecological variables with relative brain size may be due to a confounding influence of the extensive reproductive diversity of placental mammals.


2016 ◽  
Vol 283 (1834) ◽  
pp. 20161075 ◽  
Author(s):  
Matthew R. Walsh ◽  
Whitnee Broyles ◽  
Shannon M. Beston ◽  
Stephan B. Munch

Vertebrates exhibit extensive variation in relative brain size. It has long been assumed that this variation is the product of ecologically driven natural selection. Yet, despite more than 100 years of research, the ecological conditions that select for changes in brain size are unclear. Recent laboratory selection experiments showed that selection for larger brains is associated with increased survival in risky environments. Such results lead to the prediction that increased predation should favour increased brain size. Work on natural populations, however, foreshadows the opposite trajectory of evolution; increased predation favours increased boldness, slower learning, and may thereby select for a smaller brain. We tested the influence of predator-induced mortality on brain size evolution by quantifying brain size variation in a Trinidadian killifish, Rivulus hartii , from communities that differ in predation intensity. We observed strong genetic differences in male (but not female) brain size between fish communities; second generation laboratory-reared males from sites with predators exhibited smaller brains than Rivulus from sites in which they are the only fish present. Such trends oppose the results of recent laboratory selection experiments and are not explained by trade-offs with other components of fitness. Our results suggest that increased male brain size is favoured in less risky environments because of the fitness benefits associated with faster rates of learning and problem-solving behaviour.


2021 ◽  
Author(s):  
Orlin S. Todorov ◽  
Simone P. Blomberg ◽  
Anjali Goswami ◽  
Karen Sears ◽  
Patrik Drhlík ◽  
...  

AbstractConsiderable controversy exists about which hypotheses and variables best explain mammalian brain size variation. We use a new, high-coverage dataset of marsupial brain and body sizes, and the first phylogenetically imputed full datasets of 16 predictor variables, to model the prevalent hypotheses explaining brain size evolution using phylogenetically corrected Bayesian generalised linear mixed-effects modelling. Despite this comprehensive analysis, litter size emerges as the only significant predictor. Marsupials differ from the more frequently studied placentals in displaying much lower diversity of reproductive traits, which are known to interact extensively with many behavioural and ecological predictors of brain size. Our results therefore suggest that studies of relative brain size evolution in placental mammals may require targeted co-analysis or adjustment of reproductive parameters like litter size, weaning age, or gestation length. This supports suggestions that significant associations between behavioural or ecological variables with relative brain size may be due to a confounding influence of the extensive reproductive diversity of placental mammals.


2004 ◽  
Vol 61 (9) ◽  
pp. 1636-1646 ◽  
Author(s):  
David C Hardie ◽  
Paul DN Hebert

Fishes possess both the largest and smallest vertebrate genomes, but the evolutionary significance of this variation is unresolved. The present study provides new genome-size estimates for more than 500 species, with a focus on the cartilaginous and ray-finned fishes. These results confirm that genomes are smaller in ray-finned than in cartilaginous fishes, with the exception of polyploids, which account for much genome-size variation in both groups. Genome-size diversity in ray-finned fishes is not related to metabolic rate, but is positively correlated with egg diameter, suggesting linkages to the evolution of parental care. Freshwater and other eurybiotic fishes have larger genomes than their marine and stenobiotic counterparts. Although genome-size diversity among the fishes appears less clearly linked to any single biological correlate than in the birds, mammals, or amphibians, this study highlights several particularly variable taxa that are suitable for further study.


2011 ◽  
Vol 7 (4) ◽  
pp. 558-561 ◽  
Author(s):  
Alexander L. Jaffe ◽  
Graham J. Slater ◽  
Michael E. Alfaro

Extant chelonians (turtles and tortoises) span almost four orders of magnitude of body size, including the startling examples of gigantism seen in the tortoises of the Galapagos and Seychelles islands. However, the evolutionary determinants of size diversity in chelonians are poorly understood. We present a comparative analysis of body size evolution in turtles and tortoises within a phylogenetic framework. Our results reveal a pronounced relationship between habitat and optimal body size in chelonians. We found strong evidence for separate, larger optimal body sizes for sea turtles and island tortoises, the latter showing support for the rule of island gigantism in non-mammalian amniotes. Optimal sizes for freshwater and mainland terrestrial turtles are similar and smaller, although the range of body size variation in these forms is qualitatively greater. The greater number of potential niches in freshwater and terrestrial environments may mean that body size relationships are more complicated in these habitats.


2006 ◽  
Vol 2 (4) ◽  
pp. 557-560 ◽  
Author(s):  
Karin Isler ◽  
Carel P van Schaik

Abstract In the ongoing discussion about brain evolution in vertebrates, the main interest has shifted from theories focusing on energy balance to theories proposing social or ecological benefits of enhanced intellect. With the availability of a wealth of new data on basal metabolic rate (BMR) and brain size and with the aid of reliable techniques of comparative analysis, we are able to show that in fact energetics is an issue in the maintenance of a relatively large brain, and that brain size is positively correlated with the BMR in mammals, controlling for body size effects. We conclude that attempts to explain brain size variation in different taxa must consider the ability to sustain the energy costs alongside cognitive benefits.


2017 ◽  
Vol 67 (3-4) ◽  
pp. 209-225 ◽  
Author(s):  
Jun Gu ◽  
Da Yong Li ◽  
Yi Luo ◽  
Song Bei Ying ◽  
Lan Ya Zhang ◽  
...  

Brain size varies dramatically between vertebrate species. Two prominent adaptive hypotheses – the Cognitive Buffer Hypothesis (CBH) and the Expensive Brain Hypothesis (EBH) – have been proposed to explain brain size evolution. The CBH assumes that brain size should increase with seasonality, as the cognitive benefits of a larger brain should help overcoming periods of food scarcity via, for example, increased behavioral flexibility. Alternatively, the EBH states that brain size should decrease with seasonality because a smaller brain confers energetic benefits in periods of food scarcity. Here, to test the two adaptive hypotheses by studying the effects of variation in temperature and growth season on variations in overall brain size and the size of specific brain regions (viz. olfactory nerves, olfactory bulbs, telencephalon, optic tectum and cerebellum) among Hylarana guentheri populations. Inconsistent with the predictions of both the EBH and the CBH, variation in temperature and growth season did not exhibit correlations with overall brain size and the size of brain regions across populations. Hence, our data do not provide support for either the EBH or the CBH to explain brain size variation in H. guentheri. Furthermore, brain size variation did not differ between males and females in this species. Our findings suggest that both the variation in temperature and growth season did not shape the variation in brain size in H. guentheri.


BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Andrey Höglund ◽  
Katharina Strempfl ◽  
Jesper Fogelholm ◽  
Dominic Wright ◽  
Rie Henriksen

Sign in / Sign up

Export Citation Format

Share Document