scholarly journals First case report of a NUP98-PMX1 rearrangement in de novo acute myeloid leukemia and literature review

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Weijia Fu ◽  
Aijie Huang ◽  
Hui Cheng ◽  
Yanrong Luo ◽  
Lei Gao ◽  
...  

Abstract Background The nucleoporin 98 (NUP98)-paired related homeobox 1 (PMX1) fusion gene, which results from t(1;11)(q23;p15), is rare in patients with acute myeloid leukemia (AML). Currently, only two cases of chronic myeloid leukemia in the accelerated phase or blast crisis and three cases of therapy-related AML have been reported. Here, we first report a patient with de novo AML carrying the NUP98-PMX1 fusion gene. Case presentation A 49-year-old man diagnosed with AML presented the karyotype 46,XY,t(1;11)(q23;p15)[20] in bone marrow (BM) cells. Fluorescence in situ hybridization analysis using dual-color break-apart probes showed the typical signal pattern. Reverse transcription-polymerase chain reaction (RT-PCR) analysis suggested the presence of the NUP98-PMX1 fusion transcript. The patient received idarubicin and cytarabine as induction chemotherapy. After 3 weeks, the BM aspirate showed complete remission, and the RT-PCR result for the NUP98-PMX1 fusion gene was negative. Subsequently, the patient received three cycles of high-dose Ara-c as consolidation chemotherapy, after which he underwent partially matched (human leukocyte antigen–DP locus mismatch) unrelated allogeneic hematopoietic stem cell transplantation (HSCT). The follow-up period ended on September 30, 2020 (6 months after HSCT), and the patient exhibited no recurrence or transplantation-related complications. Conclusion This is the first report of a patient with de novo AML carrying the NUP98-PMX1 fusion gene. The reported case may contribute to a more comprehensive profile of the NUP98-PMX1 rearrangement, but mechanistic studies are warranted to fully understand the role of this fusion gene in leukemia pathogenesis.

Blood ◽  
1997 ◽  
Vol 90 (11) ◽  
pp. 4532-4538 ◽  
Author(s):  
Krzysztof Mrózek ◽  
Kristiina Heinonen ◽  
David Lawrence ◽  
Andrew J. Carroll ◽  
Prasad R.K. Koduru ◽  
...  

Abstract Following reports of childhood acute myeloid leukemia (AML) showing that patients with t(9; 11)(p22; q23) have a better prognosis than those with translocations between 11q23 and other chromosomes, we compared response to therapy and survival of 24 adult de novo AML patients with t(9; 11) with those of 23 patients with other 11q23 translocations [t(11q23)]. Apart from a higher proportion of French-American-British (FAB) M5 subtype in the t(9; 11) group (83% v 43%, P = .006), the patients with t(9; 11) did not differ significantly from patients with t(11q23) in terms of their presenting clinical or hematologic features. Patients with t(9; 11) more frequently had an extra chromosome(s) 8 or 8q as secondary abnormalities (46% v 9%, P = .008). All patients received standard cytarabine and daunorubicin induction therapy, and most of them also received cytarabine-based intensification treatment. Two patients, both with t(9; 11), underwent bone marrow transplantation (BMT) in first complete remission (CR). Nineteen patients (79%) with t(9; 11) and 13 (57%) with t(11q23) achieved a CR (P = .13). The clinical outcome of patients with t(9; 11) was significantly better: the median CR duration was 10.7 versus 8.9 months (P = .02), median event-free survival was 6.2 versus 2.2 months (P = .009), and median survival was 13.2 versus 7.7 months (P = .009). All patients with t(11q23) have died, whereas seven (29%) patients with t(9; 11) remain alive in first CR. Seven of eight patients with t(9; 11) who received postremission regimens with cytarabine at a dose of 100 (four patients) or 400 mg/m2 (2 patients) or who did not receive postremission therapy (2 patients) have relapsed. In contrast, 7 (64%) of 11 patients who received intensive postremission chemotherapy with high-dose cytarabine (at a dose 3 g/m2) (5 patients), or underwent BMT (2 patients) remain in continuous CR. We conclude that the outcome of adults with de novo AML and t(9; 11) is more favorable than that of adults with other 11q23 translocations; this is especially true for t(9; 11) patients who receive intensive postremission therapy.


2016 ◽  
Vol 150 (3-4) ◽  
pp. 287-292
Author(s):  
Katsuya Yamamoto ◽  
Yosuke Minami ◽  
Kimikazu Yakushijin ◽  
Yu Mizutani ◽  
Yumiko Inui ◽  
...  

The t(11;20)(p15;q11∼12) translocation is a very rare but recurrent cytogenetic aberration that occurs in myelodysplastic syndrome/acute myeloid leukemia (MDS/AML). This translocation was shown to form a fusion gene between NUP98 at 11p15 and TOP1 at 20q12. Here, we describe a new case of de novo AML M2 with t(11;20) which was associated with another balanced translocation. An 81-year-old man was admitted to undergo salvage therapy for relapsed AML. G-banding and spectral karyotyping showed 46,XY,t(2;5)(q33;q31),t(11;20)(p15;q12)[20]. Expression of the NUP98/TOP1 fusion transcript was confirmed: NUP98 exon 13 was in-frame fused with TOP1 exon 8. The reciprocal TOP1/NUP98 fusion transcript was also detected: TOP1 exon 7 was fused with NUP98 exon 14. After achieving hematological complete remission, the karyotype converted to 46,XY,t(2;5)(q33;q31)[19]/46,sl,t(11;20)(p15;q12)[1]. FISH analysis demonstrated that the 5q31 breakpoint of t(2;5) was centromeric to EGR1. In all 10 cases described in the literature, the NUP98 exon 13/TOP1 exon 8 fusion transcript was expressed, indicating that it may be responsible for the pathogenesis of MDS/AML with t(11;20). On the other hand, the TOP1/NUP98 transcript was coexpressed in 4 cases of de novo AML, but not in 3 cases of therapy-related MDS. Thus, this reciprocal fusion may be associated with progression to AML.


Blood ◽  
1997 ◽  
Vol 90 (11) ◽  
pp. 4532-4538 ◽  
Author(s):  
Krzysztof Mrózek ◽  
Kristiina Heinonen ◽  
David Lawrence ◽  
Andrew J. Carroll ◽  
Prasad R.K. Koduru ◽  
...  

Following reports of childhood acute myeloid leukemia (AML) showing that patients with t(9; 11)(p22; q23) have a better prognosis than those with translocations between 11q23 and other chromosomes, we compared response to therapy and survival of 24 adult de novo AML patients with t(9; 11) with those of 23 patients with other 11q23 translocations [t(11q23)]. Apart from a higher proportion of French-American-British (FAB) M5 subtype in the t(9; 11) group (83% v 43%, P = .006), the patients with t(9; 11) did not differ significantly from patients with t(11q23) in terms of their presenting clinical or hematologic features. Patients with t(9; 11) more frequently had an extra chromosome(s) 8 or 8q as secondary abnormalities (46% v 9%, P = .008). All patients received standard cytarabine and daunorubicin induction therapy, and most of them also received cytarabine-based intensification treatment. Two patients, both with t(9; 11), underwent bone marrow transplantation (BMT) in first complete remission (CR). Nineteen patients (79%) with t(9; 11) and 13 (57%) with t(11q23) achieved a CR (P = .13). The clinical outcome of patients with t(9; 11) was significantly better: the median CR duration was 10.7 versus 8.9 months (P = .02), median event-free survival was 6.2 versus 2.2 months (P = .009), and median survival was 13.2 versus 7.7 months (P = .009). All patients with t(11q23) have died, whereas seven (29%) patients with t(9; 11) remain alive in first CR. Seven of eight patients with t(9; 11) who received postremission regimens with cytarabine at a dose of 100 (four patients) or 400 mg/m2 (2 patients) or who did not receive postremission therapy (2 patients) have relapsed. In contrast, 7 (64%) of 11 patients who received intensive postremission chemotherapy with high-dose cytarabine (at a dose 3 g/m2) (5 patients), or underwent BMT (2 patients) remain in continuous CR. We conclude that the outcome of adults with de novo AML and t(9; 11) is more favorable than that of adults with other 11q23 translocations; this is especially true for t(9; 11) patients who receive intensive postremission therapy.


Blood ◽  
2009 ◽  
Vol 113 (17) ◽  
pp. 3903-3910 ◽  
Author(s):  
Jan Braess ◽  
Karsten Spiekermann ◽  
Peter Staib ◽  
Andreas Grüneisen ◽  
Bernhard Wörmann ◽  
...  

AbstractDose density during early induction has been demonstrated to be one of the prime determinants for treatment efficacy in acute myeloid leukemia (AML). The German AML Cooperative Group has therefore piloted a dose-dense induction regimen sequential high-dose AraC and mitoxantrone followed by pegfilgrastim (S-HAM) in which 2 induction cycles are applied over 11 to 12 days instead of 25 to 29 days as used in conventional double induction, thereby increasing dose density 2-fold. Of 172 de novo AML patients (excluding acute promyelocytic leukemia), 61% reached a complete remission, 22% a complete remission with incomplete peripheral recovery, 7% had persistent leukemia, 10% died (early death) resulting in an overall response rate of 83%. Kaplan-Meier estimated survival at 2 years was 61% for the whole group (patients with unfavorable karyotypes, 38%; patients with favorable karyotypes, 69%; patients with intermediate karyotypes, 75%) after S-HAM treatment. Importantly, the compression of the 2 induction cycles into the first 11 to 12 days of treatment was beneficial for normal hematopoiesis as demonstrated by a significantly shortened duration of critical neutropenia of 31 days compared with 46 days after conventionally timed double induction. (European Leukemia Trial Registry LN_AMLINT_2004_230.)


2003 ◽  
Vol 21 (24) ◽  
pp. 4496-4504 ◽  
Author(s):  
Thomas Büchner ◽  
Wolfgang Hiddemann ◽  
Wolfgang E. Berdel ◽  
Bernhard Wörmann ◽  
Claudia Schoch ◽  
...  

Purpose: To examine the efficacy of prolonged maintenance chemotherapy versus intensified consolidation therapy for patients with acute myeloid leukemia (AML). Materials and Methods: Eight hundred thirty-two patients (median age, 54 years; range, 16 to 82 years) with de novo AML were randomly assigned to receive 6-thioguanine, cytarabine, and daunorubicin (TAD) plus cytarabine and mitoxantrone (HAM; cytarabine 3 g/m2 [age < 60 years] or 1 g/m2 [age ≥ 60 years] × 6) induction, TAD consolidation, and monthly modified TAD maintenance for 3 years, or TAD-HAM-TAD and one course of intensive consolidation with sequential HAM (S-HAM) with cytarabine 1 g/m2 (age < 60 years) or 0.5 g/m2 (age ≥ 60 years) × 8 instead of maintenance. Results: A total of 69.2% patients went into complete remission (CR). Median relapse-free survival (RFS) was 19 months for patients on the maintenance arm, with 31.4% of patients relapse-free at 5 years, versus 12 months for patients on the S-HAM arm, with 24.7% of patients relapse-free at 5 years (P = .0118). RFS from maintenance was superior in patients with poor risk by unfavorable karyotype, age ≥ 60 years, lactate dehydrogenase level greater than 700 U/L, or day 16 bone marrow blasts greater than 40% (P = .0061) but not in patients with good risk by complete absence of any poor risk factors. Although a survival benefit in the CR patients is not significant (P = .085), more surviving patients in the maintenance than in the S-HAM arm remain in first CR (P = .026). Conclusion: We conclude that TAD-HAM-TAD-maintenance first-line treatment has a higher curative potential than TAD-HAM-TAD-S-HAM and improves prognosis even among patients with poor prognosis.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 784-784
Author(s):  
Giridharan Ramsingh ◽  
Dong Shen ◽  
Tamara Lamprecht ◽  
Sharon Heath ◽  
Robert S. Fulton ◽  
...  

Abstract Abstract 784 Whole Genome Sequencing of Therapy-Related Acute Myeloid Leukemia Giridharan Ramsingh, Dong Shen, Tamara L. Lamprecht, Sharon E. Heath, Robert S. Fulton, Elaine Mardis, Li Ding, Peter Westervelt, John Welch, Matthew J. Walter, Timothy A. Graubert, John F. DiPersio, Timothy J. Ley, Richard K. Wilson, and Daniel C. Link. Therapy related therapy-related acute myeloid leukemia (t-AML) accounts for 10–20% of all new cases of AML, and its incidence is rising. A fundamental difference in the pathogenesis of de novo AML and t-AML is prior treatment with chemotherapy and/or radiotherapy. The exposure of hematopoietic stem/progenitors cells (HSPCs) to this genotoxic stress is hypothesized to alter the number and spectrum of mutations that arise in t-AML. Moreover, the genotoxic stress may exert selective pressure to expand those HSPC clones that are inherently resistant to chemotherapy, a common feature in t-AML. To test these hypotheses, we sequenced the genomes of 23 cases of t-AML and compared them to the genomes of 24 cases of de novo AML, which we recently reported (Welch et al., Cell, July 2012). We choose to focus our initial studies on the subset of t-AML with normal cytogenetics or simple balanced translocations. Specifically, MLL gene rearrangements were observed in 22% of cases, other balanced translocations in 22%, trisomy 8 in 22%, normal karyotype in 31%, and a complex karyotype in a single case. All patients had received prior alkylator chemotherapy (62%), topoisomerase inhibitor chemotherapy (65%), or radiotherapy (77%). To identify somatic mutations, whole genome sequencing was performed on leukemic bone marrow (average 65% blasts) and skin (normal) DNA. Average haploid coverage was 37.5X and 34.7X for the leukemia and skin genomes, respectively. All somatic mutations were verified using patient-specific custom NimbleGen capture arrays, followed by Illumina sequencing. Although the total number of somatic single nucleotide variants in older patients (>50 years) with t-AML was similar to that observed in de novo AML (484 ± 68 vs. 506 ± 45, respectively), significantly more mutations were present in younger (≤ 50 years) patients with t-AML (743 ± 228) compared with de novo AML (336 ± 179, P=0.04). Exposure to chemotherapy is associated with an increased rate of transversions in relapsed AML (Ding et al., Nature 2012). However, the percentage of somatic mutations that were transversions in t-AML (35.8 ± 1.91%) was similar to that seen in de novo AML (33.5 ± 0.93%), regardless of age. In the 23 t-AML genomes, we identified recurring mutations (present in at least 2 cases) in 20 genes. Many of these mutations were also observed in de novo AML genomes (Figure 1). The most commonly mutated gene in t-AML was TET2, which was mutated in 35% of cases. Of interest, missense mutations of the ABC transporter gene ABCG2 were significantly enriched in t-AML (2/23, 8.7%) compared with de novo AML (0 in 200 cases, P=0.01). ABCG2 (also known as breast cancer resistance protein, BCRP) has been implicated in chemotherapy resistance. ABCG2 is expressed at high levels in hematopoietic stem cells, where it is known to function as a key drug transporter. Studies are underway to define the frequency of ABCG2 mutations (and other ABC transporter genes) in a larger cohort of t-AML, including cases with alterations in chromosome 5 or 7 or with complex cytogenetic abnormalities. In summary, in younger patients with t-AML, the mutational burden is higher than that of de novo AML patients, possibly reflecting prior exposure to chemoradiotherapy, though no increase in transversions was observed. Mutations of ABCG2 may contribute to chemotherapy resistance in a subset of t-AML. Figure 1. Recurring mutations in t-AML (n = 23) compared with de novo AML (n = 24). Figure 1. Recurring mutations in t-AML (n = 23) compared with de novo AML (n = 24). Disclosures: Ley: Washington University: Patents & Royalties.


2013 ◽  
Vol 35 ◽  
pp. 581-588 ◽  
Author(s):  
Pradeep Singh Chauhan ◽  
Rakhshan Ihsan ◽  
L. C. Singh ◽  
Dipendra Kumar Gupta ◽  
Vishakha Mittal ◽  
...  

Background.Mutations in NPM1 and FLT3 genes represent the most frequent genetic alterations and important diagnostic and prognostic indicators in patients with acute myeloid leukemia (AML).Objective.We investigated the prevalence and clinical characteristics of NPM1 and FLT3 mutations in 161 patients of de novo AML including adults and children.Results.NPM1 mutation was found in 21% and FLT3 mutation in 25% of the AML patients. Thirteen (8%) samples were positive for both NPM1 and FLT3/ITD mutations. Adult patients had significantly higher frequency of NPM1 mutation than children (25.8% versus 8.8%;P=0.02). Further, NPM1 mutation was found to be more frequent in patients above 45 years of age (P=0.02). NPM1 mutation was significantly associated with higher platelet count (P=0.05) and absence of hepatosplenomegaly (P=0.01), while FLT3/ITD mutation was associated with higher white blood count (P=0.01). Immunophenotypically, NPM1 mutation was associated with the lack of CD34 (P<0.001) and HLD-DR expression (P<0.001), while FLT3/ITD mutation was positively associated with the expression of CD7 (P=0.04). No correlation was found between NPM1 mutation and fusion gene. Interestingly, FLT3/ITD mutation was found to be inversely associated with AML/ETO fusion gene (P=0.04).Conclusions.The results suggest that distinct clinical and immunophenotypic characteristics of NPM1 and FLT3/ITD mutations present further insight into the molecular mechanism of leukemogenesis.


Blood ◽  
2005 ◽  
Vol 105 (6) ◽  
pp. 2527-2534 ◽  
Author(s):  
Christian Récher ◽  
Odile Beyne-Rauzy ◽  
Cécile Demur ◽  
Gaëtan Chicanne ◽  
Cédric Dos Santos ◽  
...  

AbstractThe mammalian target of rapamycin (mTOR) is a key regulator of growth and survival in many cell types. Its constitutive activation has been involved in the pathogenesis of various cancers. In this study, we show that mTOR inhibition by rapamycin strongly inhibits the growth of the most immature acute myeloid leukemia (AML) cell lines through blockade in G0/G1 phase of the cell cycle. Accordingly, 2 downstream effectors of mTOR, 4E-BP1 and p70S6K, are phosphorylated in a rapamycin-sensitive manner in a series of 23 AML cases. Interestingly, the mTOR inhibitor markedly impairs the clonogenic properties of fresh AML cells while sparing normal hematopoietic progenitors. Moreover, rapamycin induces significant clinical responses in 4 of 9 patients with either refractory/relapsed de novo AML or secondary AML. Overall, our data strongly suggest that mTOR is aberrantly regulated in most AML cells and that rapamycin and analogs, by targeting the clonogenic compartment of the leukemic clone, may be used as new compounds in AML therapy.


Blood ◽  
1995 ◽  
Vol 86 (8) ◽  
pp. 2906-2912 ◽  
Author(s):  
D Haase ◽  
M Feuring-Buske ◽  
S Konemann ◽  
C Fonatsch ◽  
C Troff ◽  
...  

Acute myeloid leukemia (AML) is a heterogenous disease according to morphology, immunophenotype, and genetics. The retained capacity of differentiation is the basis for the phenotypic classification of the bulk population of leukemic blasts and the identification of distinct subpopulations. Within the hierarchy of hematopoietic development and differentiation it is still unknown at which stage the malignant transformation occurs. It was our aim to analyze the potential involvement of cells with the immunophenotype of pluripotent stem cells in the leukemic process by the use of cytogenetic and cell sorting techniques. Cytogenetic analyses of bone marrow aspirates were performed in 13 patients with AML (11 de novo and 2 secondary) and showed karyotype abnormalities in 10 cases [2q+, +4, 6p, t(6:9), 7, +8 in 1 patient each and inv(16) in 4 patients each]. Aliquots of the samples were fractionated by fluorescence-activated cell sorting of CD34+ cells. Two subpopulations, CD34+/CD38-(early hematopoietic stem cells) and CD34+/CD38+ (more mature progenitor cells), were screened for karyotype aberations as a marker for leukemic cells. Clonal abnormalities and evaluable metaphases were found in 8 highly purified CD34+/CD38-populations and in 9 of the CD34+/CD38-specimens, respectively. In the majority of cases (CD34+/CD38-, 6 of 8 informative samples; CD34+/CD38+, 5 of 9 informative samples), the highly purified CD34+ specimens also contained cytogenetically normal cells. Secondary, progression-associated chromosomal changes (+8, 12) were identified in the CD34+/CD38-cells of 2 patients. We conclude that clonal karyotypic abnormalities are frequently found in the stem cell-like (CD34+/CD38-) and more mature (CD34+/CD38+) populations of patients with AML, irrespective of the phenotype of the bulk population of leukemic blasts and of the primary or secondary character of the leukemia. Our data suggest that, in AML, malignant transformation as well as disease progression may occur at the level of CD34+/CD38-cells with multilineage potential.


2020 ◽  
Vol 38 (30) ◽  
pp. 3506-3517 ◽  
Author(s):  
Chong Chyn Chua ◽  
Andrew W. Roberts ◽  
John Reynolds ◽  
Chun Yew Fong ◽  
Stephen B. Ting ◽  
...  

PURPOSE The B-cell lymphoma 2 (BCL-2) inhibitor venetoclax has an emerging role in acute myeloid leukemia (AML), with promising response rates in combination with hypomethylating agents or low-dose cytarabine in older patients. The tolerability and efficacy of venetoclax in combination with intensive chemotherapy in AML is unknown. PATIENTS AND METHODS Patients with AML who were ≥ 65 years (≥ 60 years if monosomal karyotype) and fit for intensive chemotherapy were allocated to venetoclax dose-escalation cohorts (range, 50-600 mg). Venetoclax was administered orally for 14 days each cycle. During induction, a 7-day prephase/dose ramp-up (days −6 to 0) was followed by an additional 7 days of venetoclax combined with infusional cytarabine 100 mg/m2 on days 1-5 and idarubicin 12 mg/m2 intravenously on days 2-3 (ie, 5 + 2). Consolidation (4 cycles) included 14 days of venetoclax (days −6 to 7) combined with cytarabine (days 1-2) and idarubicin (day 1). Maintenance venetoclax was permitted (7 cycles). The primary objective was to assess the optimal dose schedule of venetoclax with 5 + 2. RESULTS Fifty-one patients with a median age of 72 years (range, 63-80 years) were included. The maximum tolerated dose was not reached with venetoclax 600 mg/day. The main grade ≥ 3 nonhematologic toxicities during induction were febrile neutropenia (55%) and sepsis (35%). In contrast to induction, platelet recovery was notably delayed during consolidation cycles. The overall response rate (complete remission [CR]/CR with incomplete count recovery) was 72%; it was 97% in de novo AML and was 43% in secondary AML. During the venetoclax prephase, marrow blast reductions (≥ 50%) were noted in NPM1-, IDH2-, and SRSF2-mutant AML. CONCLUSION Venetoclax combined with 5 + 2 induction chemotherapy was safe and tolerable in fit older patients with AML. Although the optimal postremission therapy remains to be determined, the high remission rate in de novo AML warrants additional investigation (ANZ Clinical Trial Registry No. ACTRN12616000445471).


Sign in / Sign up

Export Citation Format

Share Document