scholarly journals Human lung fibroblasts may modulate dendritic cell phenotype and function: results from a pilot in vitro study

2016 ◽  
Vol 17 (1) ◽  
Author(s):  
Olivia Freynet ◽  
Joëlle Marchal-Sommé ◽  
Francette Jean-Louis ◽  
Arnaud Mailleux ◽  
Bruno Crestani ◽  
...  
2007 ◽  
Vol 123 ◽  
pp. S51
Author(s):  
Klara Sochorova ◽  
Vit Budinsky ◽  
Zuzana Tobiasova ◽  
Jirina Bartunkova ◽  
Sylva Dusilova Sulkova

FEBS Open Bio ◽  
2021 ◽  
Author(s):  
Ryota Kikuchi ◽  
Yuki Maeda ◽  
Takao Tsuji ◽  
Kazuhiro Yamaguchi ◽  
Shinji Abe ◽  
...  

Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1868
Author(s):  
Anna Löfdahl ◽  
Andreas Jern ◽  
Samuel Flyman ◽  
Monica Kåredal ◽  
Hanna L Karlsson ◽  
...  

Silver nanoparticles (AgNPs) are commonly used in commercial and medical applications. However, AgNPs may induce toxicity, extracellular matrix (ECM) changes and inflammatory responses. Fibroblasts are key players in remodeling processes and major producers of the ECM. The aims of this study were to explore the effect of AgNPs on cell viability, both ex vivo in murine precision cut lung slices (PCLS) and in vitro in human lung fibroblasts (HFL-1), and immunomodulatory responses in fibroblasts. PCLS and HFL-1 were exposed to AgNPs with different sizes, 10 nm and 75 nm, at concentrations 2 µg/mL and 10 μg/mL. Changes in synthesis of ECM proteins, growth factors and cytokines were analyzed in HFL-1. Ag10 and Ag75 affected cell viability, with significantly reduced metabolic activities at 10 μg/mL in both PCLS and HFL-1 after 48 h. AgNPs significantly increased procollagen I synthesis and release of IL-8, prostaglandin E2, RANTES and eotaxin, whereas reduced IL-6 release was observed in HFL-1 after 72 h. Our data indicate toxic effects of AgNP exposure on cell viability ex vivo and in vitro with altered procollagen and proinflammatory cytokine secretion in fibroblasts over time. Hence, careful characterizations of AgNPs are of importance, and future studies should include timepoints beyond 24 h.


2009 ◽  
Vol 297 (5) ◽  
pp. L912-L919 ◽  
Author(s):  
Heather E. Ferguson ◽  
Thomas H. Thatcher ◽  
Keith C. Olsen ◽  
Tatiana M. Garcia-Bates ◽  
Carolyn J. Baglole ◽  
...  

Oxidative stress plays an important role in the pathogenesis of pulmonary fibrosis. Heme oxygenase-1 (HO-1) is a key antioxidant enzyme, and overexpression of HO-1 significantly decreases lung inflammation and fibrosis in animal models. Peroxisome proliferator-activated receptor-γ (PPARγ) is a transcription factor that regulates adipogenesis, insulin sensitization, and inflammation. We report here that the PPARγ ligands 15d-PGJ2 and 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid (CDDO), which have potent antifibrotic effects in vitro, also strongly induce HO-1 expression in primary human lung fibroblasts. Pharmacological and genetic approaches are used to demonstrate that induction of HO-1 is PPARγ independent. Upregulation of HO-1 coincides with decreased intracellular glutathione (GSH) levels and can be inhibited by N-acetyl cysteine (NAC), a thiol antioxidant and GSH precursor. Upregulation of HO-1 is not inhibited by Trolox, a non-thiol antioxidant, and does not involve the transcription factors AP-1 or Nrf2. CDDO and 15d-PGJ2 contain an α/β unsaturated ketone that acts as an electrophilic center that can form covalent bonds with free reduced thiols. Rosiglitazone, a PPARγ ligand that lacks an electrophilic center, does not induce HO-1. These data suggest that in human lung fibroblasts, 15d-PGJ2 and CDDO induce HO-1 via a GSH-dependent mechanism involving the formation of covalent bonds between 15d-PGJ2 or CDDO and GSH. Inhibiting HO-1 upregulation with NAC has only a small effect on the antifibrotic properties of 15d-PGJ2 and CDDO in vitro. These results suggest that CDDO and similar electrophilic PPARγ ligands may have great clinical potential as antifibrotic agents, not only through direct effects on fibroblast differentiation and function, but indirectly by bolstering antioxidant defenses.


Sign in / Sign up

Export Citation Format

Share Document