scholarly journals Comprehensive analysis of the expression of sodium/potassium-ATPase α subunits and prognosis of ovarian serous cystadenocarcinoma

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Wei Huang ◽  
Yongjian Zhang ◽  
Ye Xu ◽  
Shaoyou Yang ◽  
Bing Li ◽  
...  
2020 ◽  
Author(s):  
Wei Huang ◽  
Yongjian Zhang ◽  
Ye Xu ◽  
Shaoyou Yang ◽  
Bing Li ◽  
...  

Abstract Background: Ovarian serous cystadenocarcinoma (OSC) is the most common and lethal gynecological cancer in women worldwide; however, biomarkers to diagnose and predict prognosis of OSC remain limited. Therefore, the present study aimed to investigate whether sodium/potassium adenosine triphosphate (Na+/K+-ATP)ase α-subunits (ATP1As) are helpful diagnostic and prognostic markers of OSC.Methods: Gene expression data (RNA-Seq) of 376 patients with OSC were downloaded from The Cancer Genome Atlas (TCGA) program database. Additional databases used in our analysis included the Gene Expression Omnibus, International Cancer Genome Consortium, Genotype–Tissue Expression, the Human Protein Atlas, cBioPortal for Cancer Genomics, and Cancer Cell Line Encyclopedia.Results: The expression levels of ATP1A1 and ATP1A3 were higher in OSC tissues than in normal ovarian tissues, whereas the expression levels of ATP1A2 and ATP1A4 were lower in OSC tissues than in normal ovarian tissues. Overexpression of ATP1A2 was significantly associated with a higher Federation of Gynecology and Obstetrics (FIGO) stage and histological grade. Increased mRNA expression of ATP1A3 was significantly associated with shorter overall survival (OS) and disease-specific survival (DSS) in patients with OSC, whereas higher expression of ATP1A4 was associated with favorable OS and DSS. Multivariate analysis showed that primary therapy outcome, residual tumor, and mRNA expressions of ATP1A3 and ATP1A4 were independent prognostic factors for both OS and DSS in patients with OSC. Moreover, ATP1A1 staining was abundant in tumor tissues. A high expression of ATP1A3 was significantly correlated with poor OS and DSS in the subgroup of patients aged ≥ 60 years and with FIGO stage III, histological grade G3, and TP53 mutation. Mutation frequencies of the ATP1As were 3%–5%.Conclusions: These results indicate that the ATP1A gene family could be potential diagnostic or prognostic markers of OSC. In addition, ATP1As may be effective therapeutic targets in the treatment of OSC.


2020 ◽  
Vol 17 (4) ◽  
pp. 510-517
Author(s):  
Santiago Ortega-Gutierrez ◽  
Brandy Jones ◽  
Alan Mendez-Ruiz ◽  
Pankhil Shah ◽  
Michel T. Torbey

Background: Hypoxic-ischemic encephalopathy (HIE) is a major cause of pediatric and adult mortality and morbidity. Unfortunately, to date, no effective treatment has been identified. In the striatum, neuronal injury is analogous to the cellular mechanism of necrosis observed during NMethyl- D-Aspartate (NMDA) excitotoxicity. Adenosine acts as a neuromodulator in the central nervous system, the role of which relies mostly on controlling excitatory glutamatergic synapses. Objective: To examine the effect of pretreatment of SCH58261, an adenosine 2A (A2A) receptor antagonist and modulator of NMDA receptor function, following hypoxic-ischemia (HI) on sodium- potassium ATPase (Na+, K+-ATPase) activity and oxidative stress. Methods: Piglets (4-7 days old) were subjected to 30 min hypoxia and 7 min of airway occlusion producing asphyxic cardiac arrest. Groups were divided into four categories: HI samples were divided into HI-vehicle group (n = 5) and HI-A2A group (n = 5). Sham controls were divided into Sham vehicle (n = 5) and Sham A2A (n = 5) groups. Vehicle groups were pretreated with 0.9% saline, whereas A2A animals were pretreated with SCH58261 10 min prior to intervention. Striatum samples were collected 3 h post-arrest. Sodium-potassium ATPase (Na+, K+-ATPase) activity, malondialdehyde (MDA) + 4-hydroxyalkenals (4-HDA) and glutathione (GSH) levels were compared. Results: Pretreatment with SCH58261 significantly attenuated the decrease in Na+, K+-ATPase, decreased MDA+4-HDA levels and increased GSH in the HI-A2A group when compared to HIvehicle. Conclusion: A2A receptor activation may contribute to neuronal injury in newborn striatum after HI in association with decreased Na+, K+-ATPase activity and increased oxidative stress.


1985 ◽  
Vol 260 (25) ◽  
pp. 13595-13600 ◽  
Author(s):  
K Morgan ◽  
M D Lewis ◽  
G Spurlock ◽  
P A Collins ◽  
S M Foord ◽  
...  

Biochemistry ◽  
1993 ◽  
Vol 32 (50) ◽  
pp. 13782-13786 ◽  
Author(s):  
Victor A. Canfield ◽  
Robert Levenson

Sign in / Sign up

Export Citation Format

Share Document