scholarly journals Ultrasonic liver steatosis quantification by a learning-based acoustic model from a novel shear wave sequence

2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Xiudong Shi ◽  
Wen Ye ◽  
Fengjun Liu ◽  
Rengyin Zhang ◽  
Qinguo Hou ◽  
...  

Abstract Background An efficient and accurate approach to quantify the steatosis extent of liver is important for clinical practice. For the purpose, we propose a specific designed ultrasound shear wave sequence to estimate ultrasonic and shear wave physical parameters. The utilization of the estimated quantitative parameters is then studied. Results Shear wave attenuation, shear wave absorption, elasticity, dispersion slope and echo attenuation were simultaneously estimated and quantified from the proposed novel shear wave sequence. Then, a regression tree model was utilized to learn the connection between the space represented by all the physical parameters and the liver fat proportion. MR mDIXON quantification was used as the ground truth for liver fat quantification. Our study included a total of 60 patients. Correlation coefficient (CC) with the ground truth were applied to mainly evaluate different methods for which the corresponding values were − 0.25, − 0.26, 0.028, 0.045, 0.46 and 0.83 for shear wave attenuation, shear wave absorption, elasticity, dispersion slope, echo attenuation and the learning-based model, respectively. The original parameters were extremely outperformed by the learning-based model for which the root mean square error for liver steatosis quantification is only 4.5% that is also state-of-the-art for ultrasound application in the related field. Conclusions Although individual ultrasonic and shear wave parameters were not perfectly adequate for liver steatosis quantification, a promising result can be achieved by the proposed learning-based acoustic model based on them.

Author(s):  
Liexiang Fan ◽  
John Benson ◽  
Lisa Clark ◽  
Jessical Lam ◽  
Adbullah Al Turki ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Guillaume Flé ◽  
Guillaume Gilbert ◽  
Pol Grasland-Mongrain ◽  
Guy Cloutier

AbstractQuantitative mechanical properties of biological tissues can be mapped using the shear wave elastography technique. This technology has demonstrated a great potential in various organs but shows a limit due to wave attenuation in biological tissues. An option to overcome the inherent loss in shear wave magnitude along the propagation pathway may be to stimulate tissues closer to regions of interest using alternative motion generation techniques. The present study investigated the feasibility of generating shear waves by applying a Lorentz force directly to tissue mimicking samples for magnetic resonance elastography applications. This was done by combining an electrical current with the strong magnetic field of a clinical MRI scanner. The Local Frequency Estimation method was used to assess the real value of the shear modulus of tested phantoms from Lorentz force induced motion. Finite elements modeling of reported experiments showed a consistent behavior but featured wavelengths larger than measured ones. Results suggest the feasibility of a magnetic resonance elastography technique based on the Lorentz force to produce an shear wave source.


2006 ◽  
Vol 291 (2) ◽  
pp. E282-E290 ◽  
Author(s):  
Riikka Lautamäki ◽  
Ronald Borra ◽  
Patricia Iozzo ◽  
Markku Komu ◽  
Terho Lehtimäki ◽  
...  

Nonalcoholic fatty liver (NAFL) is a common comorbidity in patients with type 2 diabetes and links to the risk of coronary syndromes. The aim was to determine the manifestations of metabolic syndrome in different organs in patients with liver steatosis. We studied 55 type 2 diabetic patients with coronary artery disease using positron emission tomography. Myocardial perfusion was measured with [15O]H2O and myocardial and skeletal muscle glucose uptake with 2-deoxy-2-[18F]fluoro-d-glucose during hyperinsulinemic euglycemia. Liver fat content was determined by magnetic resonance proton spectroscopy. Patients were divided on the basis of their median (8%) into two groups with low (4.6 ± 2.0%) and high (17.4 ± 8.0%) liver fat content. The groups were well matched for age, BMI, and fasting plasma glucose. In addition to insulin resistance at the whole body level ( P = 0.012) and muscle ( P = 0.002), the high liver fat group had lower insulin-stimulated myocardial glucose uptake ( P = 0.040) and glucose extraction rate ( P = 0.0006) compared with the low liver fat group. In multiple regression analysis, liver fat content was the most significant explanatory variable for myocardial insulin resistance. In addition, the high liver fat group had increased concentrations of high sensitivity C-reactive protein, soluble forms of E-selectin, vascular adhesion protein-1, and intercellular adhesion molecule-1 ( P < 0.05) and lower coronary flow reserve ( P = 0.02) compared with the low liver fat group. In conclusion, in patients with type 2 diabetes and coronary artery disease, liver fat content is a novel independent indicator of myocardial insulin resistance and reduced coronary functional capacity. Further studies will reveal the effect of hepatic fat reduction on myocardial metabolism and coronary function.


2011 ◽  
Vol 26 (suppl 2) ◽  
pp. 45-50 ◽  
Author(s):  
Gabriela S. F. Castro ◽  
João F. R. Cardoso ◽  
Helio Vannucchi ◽  
Sérgio Zucoloto ◽  
Alceu Afonso Jordão

PURPOSE: The increase in fructose consumption is paralleled by a higher incidence of obesity worldwide. This monosaccharide is linked to metabolic syndrome, being associated with hypertriglyceridemia, hypertension, insulin resistance and diabetes mellitus. It is metabolized principally in the liver, where it can be converted into fatty acids, which are stored in the form of triglycerides leading to NAFLD. Several models of NAFLD use diets high in simple carbohydrates. Thus, this study aimed to describe the major metabolic changes caused by excessive consumption of fructose in humans and animals and to present liver abnormalities resulting from high intakes of fructose in different periods of consumption and experimental designs in Wistar rats. METHODS: Two groups of rats were fasted for 48 hours and reefed for 24 or 48 hours with a diet containing 63% fructose. Another group of rats was fed an diet with 63% fructose for 90 days. RESULTS: Refeeding for 24 hours caused accumulation of large amounts of fat, compromising 100% of the hepatocytes. The amount of liver fat in animals refed for 48 hours decreased, remaining mostly in zone 2 (medium-zonal). In liver plates of Wistar rats fed 63% fructose for 45, 60 and 90 days it's possible to see that there is an increase in hepatocytes with fat accumulation according to the increased time; hepatic steatosis, however, is mild, compromising about 20% of the hepatocytes. CONCLUSIONS: Fructose is highly lipogenic, however the induction of chronic models in NAFLD requires long periods of treatment. The acute supply for 24 or 48 hours, fasted rats can cause big changes, liver steatosis with macrovesicular in all lobular zones.


2018 ◽  
Vol 178 ◽  
pp. 04004 ◽  
Author(s):  
Daniela Ionescu ◽  
Gabriela Apreotesei

Photonic metamaterials consisting of artificial opal with magnetic inclusions were considered, used in controllable microwave electronic devices. The analyzed structures consist of matrices of SiO2 nanospheres (diameter 200 - 400 nm) with included clusters of ferrite spinels (MnxCo0.6-xZn0.4Fe2O4, NixCo0.6-xZn0.4Fe2O4, LaxCo0.6-xZn0.4Fe2O4, NdxCo0.6-xZn0.4Fe2O4) in interspherical nanospacing (4 ÷ 7% concentration). The ellipsoidal clusters are polycrystalline, with spatial dimensions of 20 – 30 nm and grains of 5 – 12 nm. A controlled wave absorption was obtained in these high inductivity structures. Evolution of the wave attenuation coefficient, α[dB/m], in function of the applied magnetic field and particle inclusion size, for different content of the magnetic ions in the ferrite inclusion, have been determined at frequencies around the samples ferromagnetic resonance, by structural simulation. The test configuration was: sample inside the rectangular waveguide, mode TE10, in the frequency range 24 ÷ 40 GHz. The polarizing magnetic field for the ferrites was tested in the range of 0 ÷ 20 kOe and minimized by modifying the structure. The metamaterial design optimization was realized, controllable by different parameters at structure level. The ferromagnetic resonance influence on the control process was pointed out and also the particular results and effects which can be induced by the resonant behavior.


Sign in / Sign up

Export Citation Format

Share Document