scholarly journals Kinect and wearable inertial sensors for motor rehabilitation programs at home: state of the art and an experimental comparison

2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Bojan Milosevic ◽  
Alberto Leardini ◽  
Elisabetta Farella
Author(s):  
A. Nassour ◽  
S. Hemidat ◽  
A. Lemke ◽  
A. Elnaas ◽  
M. Nelles

Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4033
Author(s):  
Peng Ren ◽  
Fatemeh Elyasi ◽  
Roberto Manduchi

Pedestrian tracking systems implemented in regular smartphones may provide a convenient mechanism for wayfinding and backtracking for people who are blind. However, virtually all existing studies only considered sighted participants, whose gait pattern may be different from that of blind walkers using a long cane or a dog guide. In this contribution, we present a comparative assessment of several algorithms using inertial sensors for pedestrian tracking, as applied to data from WeAllWalk, the only published inertial sensor dataset collected indoors from blind walkers. We consider two situations of interest. In the first situation, a map of the building is not available, in which case we assume that users walk in a network of corridors intersecting at 45° or 90°. We propose a new two-stage turn detector that, combined with an LSTM-based step counter, can robustly reconstruct the path traversed. We compare this with RoNIN, a state-of-the-art algorithm based on deep learning. In the second situation, a map is available, which provides a strong prior on the possible trajectories. For these situations, we experiment with particle filtering, with an additional clustering stage based on mean shift. Our results highlight the importance of training and testing inertial odometry systems for assisted navigation with data from blind walkers.


2021 ◽  
Vol 29 ◽  
pp. S182-S183
Author(s):  
D. Kobsar ◽  
Z. Masood ◽  
H. Khan ◽  
N. Khalil ◽  
M. Kiwan ◽  
...  

2016 ◽  
Vol 10 ◽  
pp. 187-191 ◽  
Author(s):  
Massimiliano Pau ◽  
Silvia Caggiari ◽  
Alessandro Mura ◽  
Federica Corona ◽  
Bruno Leban ◽  
...  

Author(s):  
K. Carroll ◽  
R.A. Kennedy ◽  
V. Koutoulas ◽  
M. Bui ◽  
C.M. Kraan

2019 ◽  
Vol 2019 ◽  
pp. 1-6 ◽  
Author(s):  
Jianjun Cui ◽  
Shih-Ching Yeh ◽  
Si-Huei Lee

Frozen shoulder is a common clinical shoulder condition. Measuring the degree of shoulder joint movement is crucial to the rehabilitation process. Such measurements can be used to evaluate the severity of patients’ condition, establish rehabilitation goals and appropriate activity difficulty levels, and understand the effects of rehabilitation. Currently, measurements of the shoulder joint movement degree are typically conducted by therapists using a protractor. However, along with the growth of telerehabilitation, measuring the shoulder joint mobility on patients’ own at home will be needed. In this study, wireless inertial sensors were combined with the virtual reality interactive technology to provide an innovative shoulder joint mobility self-measurement system that can enable patients to measure their performance of four shoulder joint movements on their own at home. Pilot clinical trials were conducted with 25 patients to confirm the feasibility of the system. In addition, the results of correlation and differential analyses compared with the results of traditional measurement methods exhibited a high correlation, verifying the accuracy of the proposed system. Moreover, according to interviews with patients, they are confident in their ability to measure shoulder joint mobility themselves.


2017 ◽  
Vol 33 (12) ◽  
pp. 2110-2116 ◽  
Author(s):  
Michael Rose ◽  
Carolin Curtze ◽  
Joseph O'Sullivan ◽  
Mahmoud El-Gohary ◽  
Dennis Crawford ◽  
...  

Author(s):  
Xian Wang ◽  
Paula Tarrío ◽  
Ana María Bernardos ◽  
Eduardo Metola ◽  
José Ramón Casar

Many mobile devices embed nowadays inertial sensors. This enables new forms of human-computer interaction through the use of gestures (movements performed with the mobile device) as a way of communication. This paper presents an accelerometer-based gesture recognition system for mobile devices which is able to recognize a collection of 10 different hand gestures. The system was conceived to be light and to operate in a user-independent manner in real time. The recognition system was implemented in a smart phone and evaluated through a collection of user tests, which showed a recognition accuracy similar to other state-of-the art techniques and a lower computational complexity. The system was also used to build a human-robot interface that enables controlling a wheeled robot with the gestures made with the mobile phone


Sign in / Sign up

Export Citation Format

Share Document